|
|
- # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for tensorflow_models.object_detection.metrics.calibration_evaluation.""" # pylint: disable=line-too-long
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import tensorflow as tf
- from object_detection.core import standard_fields
- from object_detection.metrics import calibration_evaluation
-
-
- def _get_categories_list():
- return [{
- 'id': 1,
- 'name': 'person'
- }, {
- 'id': 2,
- 'name': 'dog'
- }, {
- 'id': 3,
- 'name': 'cat'
- }]
-
-
- class CalibrationDetectionEvaluationTest(tf.test.TestCase):
-
- def _get_ece(self, ece_op, update_op):
- """Return scalar expected calibration error."""
- with self.test_session() as sess:
- metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
- sess.run(tf.variables_initializer(var_list=metrics_vars))
- _ = sess.run(update_op)
- return sess.run(ece_op)
-
- def testGetECEWithMatchingGroundtruthAndDetections(self):
- """Tests that ECE is calculated correctly when box matches exist."""
- calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
- _get_categories_list(), iou_threshold=0.5)
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- # All gt and detection boxes match.
- base_eval_dict = {
- input_data_fields.key:
- tf.constant(['image_1', 'image_2', 'image_3']),
- input_data_fields.groundtruth_boxes:
- tf.constant([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]],
- dtype=tf.float32),
- detection_fields.detection_boxes:
- tf.constant([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]],
- dtype=tf.float32),
- input_data_fields.groundtruth_classes:
- tf.constant([[1], [2], [3]], dtype=tf.int64),
- # Note that, in the zero ECE case, the detection class for image_2
- # should NOT match groundtruth, since the detection score is zero.
- detection_fields.detection_scores:
- tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32)
- }
-
- # Zero ECE (perfectly calibrated).
- zero_ece_eval_dict = base_eval_dict.copy()
- zero_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
- [[1], [1], [3]], dtype=tf.int64)
- zero_ece_op, zero_ece_update_op = (
- calibration_evaluator.get_estimator_eval_metric_ops(zero_ece_eval_dict)
- ['CalibrationError/ExpectedCalibrationError'])
- zero_ece = self._get_ece(zero_ece_op, zero_ece_update_op)
- self.assertAlmostEqual(zero_ece, 0.0)
-
- # ECE of 1 (poorest calibration).
- one_ece_eval_dict = base_eval_dict.copy()
- one_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
- [[3], [2], [1]], dtype=tf.int64)
- one_ece_op, one_ece_update_op = (
- calibration_evaluator.get_estimator_eval_metric_ops(one_ece_eval_dict)
- ['CalibrationError/ExpectedCalibrationError'])
- one_ece = self._get_ece(one_ece_op, one_ece_update_op)
- self.assertAlmostEqual(one_ece, 1.0)
-
- def testGetECEWithUnmatchedGroundtruthAndDetections(self):
- """Tests that ECE is correctly calculated when boxes are unmatched."""
- calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
- _get_categories_list(), iou_threshold=0.5)
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- # No gt and detection boxes match.
- eval_dict = {
- input_data_fields.key:
- tf.constant(['image_1', 'image_2', 'image_3']),
- input_data_fields.groundtruth_boxes:
- tf.constant([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]],
- dtype=tf.float32),
- detection_fields.detection_boxes:
- tf.constant([[[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]],
- [[100., 100., 200., 200.]]],
- dtype=tf.float32),
- input_data_fields.groundtruth_classes:
- tf.constant([[1], [2], [3]], dtype=tf.int64),
- detection_fields.detection_classes:
- tf.constant([[1], [1], [3]], dtype=tf.int64),
- # Detection scores of zero when boxes are unmatched = ECE of zero.
- detection_fields.detection_scores:
- tf.constant([[0.0], [0.0], [0.0]], dtype=tf.float32)
- }
-
- ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
- eval_dict)['CalibrationError/ExpectedCalibrationError']
- ece = self._get_ece(ece_op, update_op)
- self.assertAlmostEqual(ece, 0.0)
-
- def testGetECEWithBatchedDetections(self):
- """Tests that ECE is correct with multiple detections per image."""
- calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
- _get_categories_list(), iou_threshold=0.5)
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- # Note that image_2 has mismatched classes and detection scores but should
- # still produce ECE of 0 because detection scores are also 0.
- eval_dict = {
- input_data_fields.key:
- tf.constant(['image_1', 'image_2', 'image_3']),
- input_data_fields.groundtruth_boxes:
- tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
- [[50., 50., 100., 100.], [100., 100., 200., 200.]],
- [[25., 25., 50., 50.], [100., 100., 200., 200.]]],
- dtype=tf.float32),
- detection_fields.detection_boxes:
- tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
- [[50., 50., 100., 100.], [25., 25., 50., 50.]],
- [[25., 25., 50., 50.], [100., 100., 200., 200.]]],
- dtype=tf.float32),
- input_data_fields.groundtruth_classes:
- tf.constant([[1, 2], [2, 3], [3, 1]], dtype=tf.int64),
- detection_fields.detection_classes:
- tf.constant([[1, 2], [1, 1], [3, 1]], dtype=tf.int64),
- detection_fields.detection_scores:
- tf.constant([[1.0, 1.0], [0.0, 0.0], [1.0, 1.0]], dtype=tf.float32)
- }
-
- ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
- eval_dict)['CalibrationError/ExpectedCalibrationError']
- ece = self._get_ece(ece_op, update_op)
- self.assertAlmostEqual(ece, 0.0)
-
- def testGetECEWhenImagesFilteredByIsAnnotated(self):
- """Tests that ECE is correct when detections filtered by is_annotated."""
- calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
- _get_categories_list(), iou_threshold=0.5)
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- # ECE will be 0 only if the third image is filtered by is_annotated.
- eval_dict = {
- input_data_fields.key:
- tf.constant(['image_1', 'image_2', 'image_3']),
- input_data_fields.groundtruth_boxes:
- tf.constant([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]],
- dtype=tf.float32),
- detection_fields.detection_boxes:
- tf.constant([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]],
- dtype=tf.float32),
- input_data_fields.groundtruth_classes:
- tf.constant([[1], [2], [1]], dtype=tf.int64),
- detection_fields.detection_classes:
- tf.constant([[1], [1], [3]], dtype=tf.int64),
- detection_fields.detection_scores:
- tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32),
- 'is_annotated': tf.constant([True, True, False], dtype=tf.bool)
- }
-
- ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
- eval_dict)['CalibrationError/ExpectedCalibrationError']
- ece = self._get_ece(ece_op, update_op)
- self.assertAlmostEqual(ece, 0.0)
-
- if __name__ == '__main__':
- tf.test.main()
|