You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

200 lines
8.9 KiB

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.object_detection.metrics.calibration_evaluation.""" # pylint: disable=line-too-long
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from object_detection.core import standard_fields
from object_detection.metrics import calibration_evaluation
def _get_categories_list():
return [{
'id': 1,
'name': 'person'
}, {
'id': 2,
'name': 'dog'
}, {
'id': 3,
'name': 'cat'
}]
class CalibrationDetectionEvaluationTest(tf.test.TestCase):
def _get_ece(self, ece_op, update_op):
"""Return scalar expected calibration error."""
with self.test_session() as sess:
metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES)
sess.run(tf.variables_initializer(var_list=metrics_vars))
_ = sess.run(update_op)
return sess.run(ece_op)
def testGetECEWithMatchingGroundtruthAndDetections(self):
"""Tests that ECE is calculated correctly when box matches exist."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# All gt and detection boxes match.
base_eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [3]], dtype=tf.int64),
# Note that, in the zero ECE case, the detection class for image_2
# should NOT match groundtruth, since the detection score is zero.
detection_fields.detection_scores:
tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32)
}
# Zero ECE (perfectly calibrated).
zero_ece_eval_dict = base_eval_dict.copy()
zero_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
[[1], [1], [3]], dtype=tf.int64)
zero_ece_op, zero_ece_update_op = (
calibration_evaluator.get_estimator_eval_metric_ops(zero_ece_eval_dict)
['CalibrationError/ExpectedCalibrationError'])
zero_ece = self._get_ece(zero_ece_op, zero_ece_update_op)
self.assertAlmostEqual(zero_ece, 0.0)
# ECE of 1 (poorest calibration).
one_ece_eval_dict = base_eval_dict.copy()
one_ece_eval_dict[detection_fields.detection_classes] = tf.constant(
[[3], [2], [1]], dtype=tf.int64)
one_ece_op, one_ece_update_op = (
calibration_evaluator.get_estimator_eval_metric_ops(one_ece_eval_dict)
['CalibrationError/ExpectedCalibrationError'])
one_ece = self._get_ece(one_ece_op, one_ece_update_op)
self.assertAlmostEqual(one_ece, 1.0)
def testGetECEWithUnmatchedGroundtruthAndDetections(self):
"""Tests that ECE is correctly calculated when boxes are unmatched."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# No gt and detection boxes match.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]],
[[100., 100., 200., 200.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [3]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1], [1], [3]], dtype=tf.int64),
# Detection scores of zero when boxes are unmatched = ECE of zero.
detection_fields.detection_scores:
tf.constant([[0.0], [0.0], [0.0]], dtype=tf.float32)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
def testGetECEWithBatchedDetections(self):
"""Tests that ECE is correct with multiple detections per image."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# Note that image_2 has mismatched classes and detection scores but should
# still produce ECE of 0 because detection scores are also 0.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
[[50., 50., 100., 100.], [100., 100., 200., 200.]],
[[25., 25., 50., 50.], [100., 100., 200., 200.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.], [50., 50., 100., 100.]],
[[50., 50., 100., 100.], [25., 25., 50., 50.]],
[[25., 25., 50., 50.], [100., 100., 200., 200.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1, 2], [2, 3], [3, 1]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1, 2], [1, 1], [3, 1]], dtype=tf.int64),
detection_fields.detection_scores:
tf.constant([[1.0, 1.0], [0.0, 0.0], [1.0, 1.0]], dtype=tf.float32)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
def testGetECEWhenImagesFilteredByIsAnnotated(self):
"""Tests that ECE is correct when detections filtered by is_annotated."""
calibration_evaluator = calibration_evaluation.CalibrationDetectionEvaluator(
_get_categories_list(), iou_threshold=0.5)
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
# ECE will be 0 only if the third image is filtered by is_annotated.
eval_dict = {
input_data_fields.key:
tf.constant(['image_1', 'image_2', 'image_3']),
input_data_fields.groundtruth_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
detection_fields.detection_boxes:
tf.constant([[[100., 100., 200., 200.]],
[[50., 50., 100., 100.]],
[[25., 25., 50., 50.]]],
dtype=tf.float32),
input_data_fields.groundtruth_classes:
tf.constant([[1], [2], [1]], dtype=tf.int64),
detection_fields.detection_classes:
tf.constant([[1], [1], [3]], dtype=tf.int64),
detection_fields.detection_scores:
tf.constant([[1.0], [0.0], [1.0]], dtype=tf.float32),
'is_annotated': tf.constant([True, True, False], dtype=tf.bool)
}
ece_op, update_op = calibration_evaluator.get_estimator_eval_metric_ops(
eval_dict)['CalibrationError/ExpectedCalibrationError']
ece = self._get_ece(ece_op, update_op)
self.assertAlmostEqual(ece, 0.0)
if __name__ == '__main__':
tf.test.main()