|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Numpy BoxList classes and functions."""
-
- import numpy as np
-
-
- class BoxList(object):
- """Box collection.
-
- BoxList represents a list of bounding boxes as numpy array, where each
- bounding box is represented as a row of 4 numbers,
- [y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a
- given list correspond to a single image.
-
- Optionally, users can add additional related fields (such as
- objectness/classification scores).
- """
-
- def __init__(self, data):
- """Constructs box collection.
-
- Args:
- data: a numpy array of shape [N, 4] representing box coordinates
-
- Raises:
- ValueError: if bbox data is not a numpy array
- ValueError: if invalid dimensions for bbox data
- """
- if not isinstance(data, np.ndarray):
- raise ValueError('data must be a numpy array.')
- if len(data.shape) != 2 or data.shape[1] != 4:
- raise ValueError('Invalid dimensions for box data.')
- if data.dtype != np.float32 and data.dtype != np.float64:
- raise ValueError('Invalid data type for box data: float is required.')
- if not self._is_valid_boxes(data):
- raise ValueError('Invalid box data. data must be a numpy array of '
- 'N*[y_min, x_min, y_max, x_max]')
- self.data = {'boxes': data}
-
- def num_boxes(self):
- """Return number of boxes held in collections."""
- return self.data['boxes'].shape[0]
-
- def get_extra_fields(self):
- """Return all non-box fields."""
- return [k for k in self.data.keys() if k != 'boxes']
-
- def has_field(self, field):
- return field in self.data
-
- def add_field(self, field, field_data):
- """Add data to a specified field.
-
- Args:
- field: a string parameter used to speficy a related field to be accessed.
- field_data: a numpy array of [N, ...] representing the data associated
- with the field.
- Raises:
- ValueError: if the field is already exist or the dimension of the field
- data does not matches the number of boxes.
- """
- if self.has_field(field):
- raise ValueError('Field ' + field + 'already exists')
- if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes():
- raise ValueError('Invalid dimensions for field data')
- self.data[field] = field_data
-
- def get(self):
- """Convenience function for accesssing box coordinates.
-
- Returns:
- a numpy array of shape [N, 4] representing box corners
- """
- return self.get_field('boxes')
-
- def get_field(self, field):
- """Accesses data associated with the specified field in the box collection.
-
- Args:
- field: a string parameter used to speficy a related field to be accessed.
-
- Returns:
- a numpy 1-d array representing data of an associated field
-
- Raises:
- ValueError: if invalid field
- """
- if not self.has_field(field):
- raise ValueError('field {} does not exist'.format(field))
- return self.data[field]
-
- def get_coordinates(self):
- """Get corner coordinates of boxes.
-
- Returns:
- a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max]
- """
- box_coordinates = self.get()
- y_min = box_coordinates[:, 0]
- x_min = box_coordinates[:, 1]
- y_max = box_coordinates[:, 2]
- x_max = box_coordinates[:, 3]
- return [y_min, x_min, y_max, x_max]
-
- def _is_valid_boxes(self, data):
- """Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin].
-
- Args:
- data: a numpy array of shape [N, 4] representing box coordinates
-
- Returns:
- a boolean indicating whether all ymax of boxes are equal or greater than
- ymin, and all xmax of boxes are equal or greater than xmin.
- """
- if data.shape[0] > 0:
- for i in range(data.shape[0]):
- if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]:
- return False
- return True
|