|
|
- # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Test utility functions for manipulating Keras models."""
-
- import tensorflow as tf
-
- from object_detection.utils import model_util
-
-
- class ExtractSubmodelUtilTest(tf.test.TestCase):
-
- def test_simple_model(self):
- inputs = tf.keras.Input(shape=(256,)) # Returns a placeholder tensor
-
- # A layer instance is callable on a tensor, and returns a tensor.
- x = tf.keras.layers.Dense(128, activation='relu', name='a')(inputs)
- x = tf.keras.layers.Dense(64, activation='relu', name='b')(x)
- x = tf.keras.layers.Dense(32, activation='relu', name='c')(x)
- x = tf.keras.layers.Dense(16, activation='relu', name='d')(x)
- x = tf.keras.layers.Dense(8, activation='relu', name='e')(x)
- predictions = tf.keras.layers.Dense(10, activation='softmax')(x)
-
- model = tf.keras.Model(inputs=inputs, outputs=predictions)
-
- new_in = model.get_layer(
- name='b').input
- new_out = model.get_layer(
- name='d').output
-
- new_model = model_util.extract_submodel(
- model=model,
- inputs=new_in,
- outputs=new_out)
-
- batch_size = 3
- ones = tf.ones((batch_size, 128))
- final_out = new_model(ones)
- self.assertAllEqual(final_out.shape, (batch_size, 16))
-
- if __name__ == '__main__':
- tf.test.main()
|