|
|
- import cv2
- import time
- import numpy as np
-
- MODE = "MPI"
-
- if MODE is "COCO":
- protoFile = "pose/coco/pose_deploy_linevec.prototxt"
- weightsFile = "pose/coco/pose_iter_440000.caffemodel"
- nPoints = 18
- POSE_PAIRS = [ [1,0],[1,2],[1,5],[2,3],[3,4],[5,6],[6,7],[1,8],[8,9],[9,10],[1,11],[11,12],[12,13],[0,14],[0,15],[14,16],[15,17]]
-
- elif MODE is "MPI" :
- protoFile = "pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt"
- weightsFile = "pose/mpi/pose_iter_160000.caffemodel"
- nPoints = 15
- POSE_PAIRS = [[0,1], [1,2], [2,3], [3,4], [1,5], [5,6], [6,7], [1,14], [14,8], [8,9], [9,10], [14,11], [11,12], [12,13] ]
-
-
- frame = cv2.imread("single.jpeg")
- frameCopy = np.copy(frame)
- frameWidth = frame.shape[1]
- frameHeight = frame.shape[0]
- threshold = 0.2
-
- net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
-
- t = time.time()
- # input image dimensions for the network
- inWidth = 368
- inHeight = 368
- inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
- (0, 0, 0), swapRB=False, crop=False)
-
- net.setInput(inpBlob)
-
- output = net.forward()
- print("time taken by network : {:.3f}".format(time.time() - t))
-
- H = output.shape[2]
- W = output.shape[3]
-
- # Empty list to store the detected keypoints
- points = []
-
- for i in range(nPoints):
- # confidence map of corresponding body's part.
- probMap = output[0, i, :, :]
-
- # Find global maxima of the probMap.
- minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)
-
- # Scale the point to fit on the original image
- x = (frameWidth * point[0]) / W
- y = (frameHeight * point[1]) / H
-
- if prob > threshold :
- cv2.circle(frameCopy, (int(x), int(y)), 8, (0, 255, 255), thickness=-1, lineType=cv2.FILLED)
- cv2.putText(frameCopy, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, lineType=cv2.LINE_AA)
-
- # Add the point to the list if the probability is greater than the threshold
- points.append((int(x), int(y)))
- else :
- points.append(None)
-
- # Draw Skeleton
- for pair in POSE_PAIRS:
- partA = pair[0]
- partB = pair[1]
-
- if points[partA] and points[partB]:
- cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2)
- cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
-
-
- cv2.imshow('Output-Keypoints', cv2.resize(frameCopy,(900,900)))
- cv2.imshow('Output-Skeleton', cv2.resize(frame,(600,900)))
-
-
- cv2.imwrite('Output-Keypoints.jpg', frameCopy)
- cv2.imwrite('Output-Skeleton.jpg', frame)
-
- print("Total time taken : {:.3f}".format(time.time() - t))
-
- cv2.waitKey(0)
|