|
|
- from modules import utils
-
- from flask import Flask, request, Response
- from flask_restful import Resource, Api
-
- from PIL import Image
- import cv2
-
- import base64
- import json
- import sys
- import os
- import io
-
- MIN_AREA_RATIO = 0.1
-
- MIN_SCORE_THRESH = 0.6
-
- if sys.platform == "win32":
- import tensorflow as tf
- import numpy as np
- import pickle
-
- sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
- from utils import label_map_util
-
- from utils import visualization_utils as vis_util
-
- app = Flask(__name__)
- api = Api(app)
-
- db_path = os.path.join(app.root_path, 'databases', 'crashes.json')
- with open(db_path, 'r') as f:
- crashes = json.load(f)
-
- users_path = os.path.join(app.root_path, 'databases', 'users.json')
- with open(users_path, 'r') as f:
- users = json.load(f)
-
- if sys.platform == "win32":
- # PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/kitti_label_map.pbtxt'
- # PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb'
-
- PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/mscoco_label_map.pbtxt'
- PATH_TO_CKPT = '../../traffic_analyzer/rfcn_resnet101_coco_2018_01_28/frozen_inference_graph.pb'
- category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
-
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- def process_img(img_base64):
- if sys.platform == "win32":
- img = Image.open(io.BytesIO(base64.b64decode(img_base64)))
- with detection_graph.as_default():
- with tf.Session(graph=detection_graph) as sess:
- # Definite input and output Tensors for detection_graph
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- # Each box represents a part of the image where a particular object was detected.
- detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- # Each score represent how level of confidence for each of the objects.
- # Score is shown on the result image, together with the class label.
- detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
- detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- # the array based representation of the image will be used later in order to prepare the
- # result image with boxes and labels on it.
- image_np = load_image_into_numpy_array(img)
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
- image_np_expanded = np.expand_dims(image_np, axis=0)
- # Actual detection.
- (boxes, scores, classes, num) = sess.run(
- [detection_boxes, detection_scores, detection_classes, num_detections],
- feed_dict={image_tensor: image_np_expanded})
- # Visualization of the results of a detection.
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- min_score_thresh=MIN_SCORE_THRESH,
- use_normalized_coordinates=True,
- line_thickness=8)
-
- output_dict = {'detection_classes': np.squeeze(classes).astype(np.int32), 'detection_scores': np.squeeze(scores), 'detection_boxes': np.squeeze(boxes)}
- with open('image_1_data.pkl', 'wb') as f:
- pickle.dump(output_dict, f)
- cv2.imwrite('image_1.jpg', image_np)
- im_height, im_width, _ = image_np.shape
- cars_involved = 0
- injured_people = 0
- prev_cars = []
- for index, i in enumerate(output_dict['detection_classes']):
- score = output_dict['detection_scores'][index]
- if score > MIN_SCORE_THRESH:
- if i in [3, 6, 8]:
- box = output_dict['detection_boxes'][index]
- (left, right, top, bottom) = (box[1] * im_width, box[3] * im_width,
- box[0] * im_height, box[2] * im_height)
-
- avg_x = left+right/2
- avg_y = top+bottom/2
- same = False
- for prev_x, prev_y in prev_cars:
- if abs(prev_x-avg_x) < 130 and abs(prev_y-avg_y) < 130:
- same = True
- break
-
- if not same:
- cars_involved += 1
- prev_cars.append((avg_x, avg_y))
-
- elif i == 1:
- box = output_dict['detection_boxes'][index]
- (left, right, top, bottom) = (box[1] * im_width, box[3] * im_width,
- box[0] * im_height, box[2] * im_height)
-
- if right-left > bottom-top:
- injured_people += 1
-
- _, buffer = cv2.imencode('.jpg', image_np)
- return base64.b64encode(buffer).decode('ascii'), cars_involved, injured_people
-
- return img_base64, 7, ["unprocessed"]
-
- class Crash(Resource):
- def post(self):
- message = request.form['message']
- base64_img = request.form['img']
- id = request.form['id']
- lat, long = request.form['lat'], request.form['long']
-
- image, car_count, injured = process_img(base64_img)
- priority = car_count + injured
- if priority > 10:
- priority = 10
-
- crash = {
- 'img': image,
- 'message': message,
- 'priority': priority,
- 'stats': {
- 'cars': car_count,
- 'injured': injured
- },
- 'location': {
- 'latitude': lat,
- 'longitude': long
- }
- }
- if id in crashes:
- crashes[id].append(crash)
- else:
- crashes[id] = [crash]
-
- with open(db_path, 'w') as f:
- json.dump(crashes, f, indent=4)
-
- cv2.imshow("a",load_image_into_numpy_array(Image.open(io.BytesIO(base64.b64decode(image)))))
- cv2.waitKey(0)
-
-
- return crash
-
- class Crashes(Resource):
- def get(self):
- return crashes
-
- class Box:
- def __init__(self,coords, type):
- self.x1 = coords[0]
- self.y1 = coords[2]
- self.x2 = coords[1]
- self.y2 = coords[3]
- self.area = (self.x2-self.x1) * (self.y2-self.y1)
- self.type = type
-
- def get_bigger(self,box):
- if box.type == self.type:
- return None
- left = max(box.x1, self.x1)
- right = min(box.x2, self.x2)
- bottom = max(box.y2, self.y2)
- top = min(box.y1, self.y1)
-
- if not left < right and bottom < top:
- return None
-
- if ((box.area * (box.area < self.area)) + (self.area * (box.area > self.area))) / (right-left)*(top-bottom) < MIN_AREA_RATIO:
- return None
-
- if box.area > self.area:
- return box
- else:
- return self
-
-
-
-
-
|