You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

210 lines
7.6 KiB

from modules import utils
from flask import Flask, request, Response
from flask_restful import Resource, Api
from PIL import Image
import cv2
import base64
import json
import sys
import os
import io
MIN_AREA_RATIO = 0.1
MIN_SCORE_THRESH = 0.6
if sys.platform == "win32":
import tensorflow as tf
import numpy as np
import pickle
sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
from utils import label_map_util
from utils import visualization_utils as vis_util
app = Flask(__name__)
api = Api(app)
db_path = os.path.join(app.root_path, 'databases', 'crashes.json')
with open(db_path, 'r') as f:
crashes = json.load(f)
users_path = os.path.join(app.root_path, 'databases', 'users.json')
with open(users_path, 'r') as f:
users = json.load(f)
if sys.platform == "win32":
# PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/kitti_label_map.pbtxt'
# PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb'
PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/mscoco_label_map.pbtxt'
PATH_TO_CKPT = '../../traffic_analyzer/rfcn_resnet101_coco_2018_01_28/frozen_inference_graph.pb'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def process_img(img_base64):
if sys.platform == "win32":
img = Image.open(io.BytesIO(base64.b64decode(img_base64)))
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(img)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
min_score_thresh=MIN_SCORE_THRESH,
use_normalized_coordinates=True,
line_thickness=8)
output_dict = {'detection_classes': np.squeeze(classes).astype(np.int32), 'detection_scores': np.squeeze(scores), 'detection_boxes': np.squeeze(boxes)}
with open('image_1_data.pkl', 'wb') as f:
pickle.dump(output_dict, f)
cv2.imwrite('image_1.jpg', image_np)
im_height, im_width, _ = image_np.shape
cars_involved = 0
injured_people = 0
prev_cars = []
for index, i in enumerate(output_dict['detection_classes']):
score = output_dict['detection_scores'][index]
if score > MIN_SCORE_THRESH:
if i in [3, 6, 8]:
box = output_dict['detection_boxes'][index]
(left, right, top, bottom) = (box[1] * im_width, box[3] * im_width,
box[0] * im_height, box[2] * im_height)
avg_x = left+right/2
avg_y = top+bottom/2
same = False
for prev_x, prev_y in prev_cars:
if abs(prev_x-avg_x) < 130 and abs(prev_y-avg_y) < 130:
same = True
break
if not same:
cars_involved += 1
prev_cars.append((avg_x, avg_y))
elif i == 1:
box = output_dict['detection_boxes'][index]
(left, right, top, bottom) = (box[1] * im_width, box[3] * im_width,
box[0] * im_height, box[2] * im_height)
if right-left > bottom-top:
injured_people += 1
_, buffer = cv2.imencode('.jpg', image_np)
return base64.b64encode(buffer).decode('ascii'), cars_involved, injured_people
return img_base64, 7, ["unprocessed"]
class Crash(Resource):
def post(self):
message = request.form['message']
base64_img = request.form['img']
id = request.form['id']
lat, long = request.form['lat'], request.form['long']
image, car_count, injured = process_img(base64_img)
priority = car_count + injured
if priority > 10:
priority = 10
crash = {
'img': image,
'message': message,
'priority': priority,
'stats': {
'cars': car_count,
'injured': injured
},
'location': {
'latitude': lat,
'longitude': long
}
}
if id in crashes:
crashes[id].append(crash)
else:
crashes[id] = [crash]
with open(db_path, 'w') as f:
json.dump(crashes, f, indent=4)
cv2.imshow("a",load_image_into_numpy_array(Image.open(io.BytesIO(base64.b64decode(image)))))
cv2.waitKey(0)
return crash
class Crashes(Resource):
def get(self):
return crashes
class Box:
def __init__(self,coords, type):
self.x1 = coords[0]
self.y1 = coords[2]
self.x2 = coords[1]
self.y2 = coords[3]
self.area = (self.x2-self.x1) * (self.y2-self.y1)
self.type = type
def get_bigger(self,box):
if box.type == self.type:
return None
left = max(box.x1, self.x1)
right = min(box.x2, self.x2)
bottom = max(box.y2, self.y2)
top = min(box.y1, self.y1)
if not left < right and bottom < top:
return None
if ((box.area * (box.area < self.area)) + (self.area * (box.area > self.area))) / (right-left)*(top-bottom) < MIN_AREA_RATIO:
return None
if box.area > self.area:
return box
else:
return self