|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""A function to build a DetectionModel from configuration."""
|
|
|
|
import functools
|
|
|
|
from object_detection.builders import anchor_generator_builder
|
|
from object_detection.builders import box_coder_builder
|
|
from object_detection.builders import box_predictor_builder
|
|
from object_detection.builders import hyperparams_builder
|
|
from object_detection.builders import image_resizer_builder
|
|
from object_detection.builders import losses_builder
|
|
from object_detection.builders import matcher_builder
|
|
from object_detection.builders import post_processing_builder
|
|
from object_detection.builders import region_similarity_calculator_builder as sim_calc
|
|
from object_detection.core import balanced_positive_negative_sampler as sampler
|
|
from object_detection.core import post_processing
|
|
from object_detection.core import target_assigner
|
|
from object_detection.meta_architectures import faster_rcnn_meta_arch
|
|
from object_detection.meta_architectures import rfcn_meta_arch
|
|
from object_detection.meta_architectures import ssd_meta_arch
|
|
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
|
|
from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
|
|
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
|
|
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
|
|
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
|
|
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
|
|
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
|
|
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
|
|
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
|
|
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
|
|
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
|
|
from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
|
|
from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
|
|
from object_detection.predictors import rfcn_box_predictor
|
|
from object_detection.predictors import rfcn_keras_box_predictor
|
|
from object_detection.predictors.heads import mask_head
|
|
from object_detection.protos import model_pb2
|
|
from object_detection.utils import ops
|
|
|
|
# A map of names to SSD feature extractors.
|
|
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
|
|
'ssd_inception_v2': SSDInceptionV2FeatureExtractor,
|
|
'ssd_inception_v3': SSDInceptionV3FeatureExtractor,
|
|
'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor,
|
|
'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor,
|
|
'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor,
|
|
'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor,
|
|
'ssd_mobilenet_v2_fpn': SSDMobileNetV2FpnFeatureExtractor,
|
|
'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
|
|
'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
|
|
'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
|
|
'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
|
|
'ssd_resnet101_v1_ppn':
|
|
ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
|
|
'ssd_resnet152_v1_ppn':
|
|
ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
|
|
'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor,
|
|
'ssd_pnasnet': SSDPNASNetFeatureExtractor,
|
|
}
|
|
|
|
SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
|
|
'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
|
|
'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
|
|
'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
|
|
'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
|
|
}
|
|
|
|
# A map of names to Faster R-CNN feature extractors.
|
|
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
|
|
'faster_rcnn_nas':
|
|
frcnn_nas.FasterRCNNNASFeatureExtractor,
|
|
'faster_rcnn_pnas':
|
|
frcnn_pnas.FasterRCNNPNASFeatureExtractor,
|
|
'faster_rcnn_inception_resnet_v2':
|
|
frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
|
|
'faster_rcnn_inception_v2':
|
|
frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
|
|
'faster_rcnn_resnet50':
|
|
frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
|
|
'faster_rcnn_resnet101':
|
|
frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
|
|
'faster_rcnn_resnet152':
|
|
frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
|
|
}
|
|
|
|
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
|
|
'faster_rcnn_inception_resnet_v2_keras':
|
|
frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
|
|
}
|
|
|
|
|
|
def build(model_config, is_training, add_summaries=True):
|
|
"""Builds a DetectionModel based on the model config.
|
|
|
|
Args:
|
|
model_config: A model.proto object containing the config for the desired
|
|
DetectionModel.
|
|
is_training: True if this model is being built for training purposes.
|
|
add_summaries: Whether to add tensorflow summaries in the model graph.
|
|
Returns:
|
|
DetectionModel based on the config.
|
|
|
|
Raises:
|
|
ValueError: On invalid meta architecture or model.
|
|
"""
|
|
if not isinstance(model_config, model_pb2.DetectionModel):
|
|
raise ValueError('model_config not of type model_pb2.DetectionModel.')
|
|
meta_architecture = model_config.WhichOneof('model')
|
|
if meta_architecture == 'ssd':
|
|
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
|
|
if meta_architecture == 'faster_rcnn':
|
|
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
|
|
add_summaries)
|
|
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
|
|
|
|
|
|
def _build_ssd_feature_extractor(feature_extractor_config,
|
|
is_training,
|
|
freeze_batchnorm,
|
|
reuse_weights=None):
|
|
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
|
|
|
|
Args:
|
|
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
|
|
is_training: True if this feature extractor is being built for training.
|
|
freeze_batchnorm: Whether to freeze batch norm parameters during
|
|
training or not. When training with a small batch size (e.g. 1), it is
|
|
desirable to freeze batch norm update and use pretrained batch norm
|
|
params.
|
|
reuse_weights: if the feature extractor should reuse weights.
|
|
|
|
Returns:
|
|
ssd_meta_arch.SSDFeatureExtractor based on config.
|
|
|
|
Raises:
|
|
ValueError: On invalid feature extractor type.
|
|
"""
|
|
feature_type = feature_extractor_config.type
|
|
is_keras_extractor = feature_type in SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
|
|
depth_multiplier = feature_extractor_config.depth_multiplier
|
|
min_depth = feature_extractor_config.min_depth
|
|
pad_to_multiple = feature_extractor_config.pad_to_multiple
|
|
use_explicit_padding = feature_extractor_config.use_explicit_padding
|
|
use_depthwise = feature_extractor_config.use_depthwise
|
|
|
|
if is_keras_extractor:
|
|
conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
|
|
feature_extractor_config.conv_hyperparams)
|
|
else:
|
|
conv_hyperparams = hyperparams_builder.build(
|
|
feature_extractor_config.conv_hyperparams, is_training)
|
|
override_base_feature_extractor_hyperparams = (
|
|
feature_extractor_config.override_base_feature_extractor_hyperparams)
|
|
|
|
if (feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP) and (
|
|
not is_keras_extractor):
|
|
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
|
|
|
|
if is_keras_extractor:
|
|
feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
|
|
feature_type]
|
|
else:
|
|
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
|
|
kwargs = {
|
|
'is_training':
|
|
is_training,
|
|
'depth_multiplier':
|
|
depth_multiplier,
|
|
'min_depth':
|
|
min_depth,
|
|
'pad_to_multiple':
|
|
pad_to_multiple,
|
|
'use_explicit_padding':
|
|
use_explicit_padding,
|
|
'use_depthwise':
|
|
use_depthwise,
|
|
'override_base_feature_extractor_hyperparams':
|
|
override_base_feature_extractor_hyperparams
|
|
}
|
|
|
|
if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
|
|
kwargs.update({
|
|
'replace_preprocessor_with_placeholder':
|
|
feature_extractor_config.replace_preprocessor_with_placeholder
|
|
})
|
|
|
|
if is_keras_extractor:
|
|
kwargs.update({
|
|
'conv_hyperparams': conv_hyperparams,
|
|
'inplace_batchnorm_update': False,
|
|
'freeze_batchnorm': freeze_batchnorm
|
|
})
|
|
else:
|
|
kwargs.update({
|
|
'conv_hyperparams_fn': conv_hyperparams,
|
|
'reuse_weights': reuse_weights,
|
|
})
|
|
|
|
if feature_extractor_config.HasField('fpn'):
|
|
kwargs.update({
|
|
'fpn_min_level':
|
|
feature_extractor_config.fpn.min_level,
|
|
'fpn_max_level':
|
|
feature_extractor_config.fpn.max_level,
|
|
'additional_layer_depth':
|
|
feature_extractor_config.fpn.additional_layer_depth,
|
|
})
|
|
|
|
return feature_extractor_class(**kwargs)
|
|
|
|
|
|
def _build_ssd_model(ssd_config, is_training, add_summaries):
|
|
"""Builds an SSD detection model based on the model config.
|
|
|
|
Args:
|
|
ssd_config: A ssd.proto object containing the config for the desired
|
|
SSDMetaArch.
|
|
is_training: True if this model is being built for training purposes.
|
|
add_summaries: Whether to add tf summaries in the model.
|
|
Returns:
|
|
SSDMetaArch based on the config.
|
|
|
|
Raises:
|
|
ValueError: If ssd_config.type is not recognized (i.e. not registered in
|
|
model_class_map).
|
|
"""
|
|
num_classes = ssd_config.num_classes
|
|
|
|
# Feature extractor
|
|
feature_extractor = _build_ssd_feature_extractor(
|
|
feature_extractor_config=ssd_config.feature_extractor,
|
|
freeze_batchnorm=ssd_config.freeze_batchnorm,
|
|
is_training=is_training)
|
|
|
|
box_coder = box_coder_builder.build(ssd_config.box_coder)
|
|
matcher = matcher_builder.build(ssd_config.matcher)
|
|
region_similarity_calculator = sim_calc.build(
|
|
ssd_config.similarity_calculator)
|
|
encode_background_as_zeros = ssd_config.encode_background_as_zeros
|
|
negative_class_weight = ssd_config.negative_class_weight
|
|
anchor_generator = anchor_generator_builder.build(
|
|
ssd_config.anchor_generator)
|
|
if feature_extractor.is_keras_model:
|
|
ssd_box_predictor = box_predictor_builder.build_keras(
|
|
hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
|
|
freeze_batchnorm=ssd_config.freeze_batchnorm,
|
|
inplace_batchnorm_update=False,
|
|
num_predictions_per_location_list=anchor_generator
|
|
.num_anchors_per_location(),
|
|
box_predictor_config=ssd_config.box_predictor,
|
|
is_training=is_training,
|
|
num_classes=num_classes,
|
|
add_background_class=ssd_config.add_background_class)
|
|
else:
|
|
ssd_box_predictor = box_predictor_builder.build(
|
|
hyperparams_builder.build, ssd_config.box_predictor, is_training,
|
|
num_classes, ssd_config.add_background_class)
|
|
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
|
|
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
|
|
ssd_config.post_processing)
|
|
(classification_loss, localization_loss, classification_weight,
|
|
localization_weight, hard_example_miner, random_example_sampler,
|
|
expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
|
|
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
|
|
normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
|
|
|
|
equalization_loss_config = ops.EqualizationLossConfig(
|
|
weight=ssd_config.loss.equalization_loss.weight,
|
|
exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
|
|
|
|
target_assigner_instance = target_assigner.TargetAssigner(
|
|
region_similarity_calculator,
|
|
matcher,
|
|
box_coder,
|
|
negative_class_weight=negative_class_weight)
|
|
|
|
ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
|
|
kwargs = {}
|
|
|
|
return ssd_meta_arch_fn(
|
|
is_training=is_training,
|
|
anchor_generator=anchor_generator,
|
|
box_predictor=ssd_box_predictor,
|
|
box_coder=box_coder,
|
|
feature_extractor=feature_extractor,
|
|
encode_background_as_zeros=encode_background_as_zeros,
|
|
image_resizer_fn=image_resizer_fn,
|
|
non_max_suppression_fn=non_max_suppression_fn,
|
|
score_conversion_fn=score_conversion_fn,
|
|
classification_loss=classification_loss,
|
|
localization_loss=localization_loss,
|
|
classification_loss_weight=classification_weight,
|
|
localization_loss_weight=localization_weight,
|
|
normalize_loss_by_num_matches=normalize_loss_by_num_matches,
|
|
hard_example_miner=hard_example_miner,
|
|
target_assigner_instance=target_assigner_instance,
|
|
add_summaries=add_summaries,
|
|
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
|
|
freeze_batchnorm=ssd_config.freeze_batchnorm,
|
|
inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
|
|
add_background_class=ssd_config.add_background_class,
|
|
explicit_background_class=ssd_config.explicit_background_class,
|
|
random_example_sampler=random_example_sampler,
|
|
expected_loss_weights_fn=expected_loss_weights_fn,
|
|
use_confidences_as_targets=ssd_config.use_confidences_as_targets,
|
|
implicit_example_weight=ssd_config.implicit_example_weight,
|
|
equalization_loss_config=equalization_loss_config,
|
|
**kwargs)
|
|
|
|
|
|
def _build_faster_rcnn_feature_extractor(
|
|
feature_extractor_config, is_training, reuse_weights=None,
|
|
inplace_batchnorm_update=False):
|
|
"""Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
|
|
|
|
Args:
|
|
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
|
|
faster_rcnn.proto.
|
|
is_training: True if this feature extractor is being built for training.
|
|
reuse_weights: if the feature extractor should reuse weights.
|
|
inplace_batchnorm_update: Whether to update batch_norm inplace during
|
|
training. This is required for batch norm to work correctly on TPUs. When
|
|
this is false, user must add a control dependency on
|
|
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
|
|
norm moving average parameters.
|
|
|
|
Returns:
|
|
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
|
|
|
|
Raises:
|
|
ValueError: On invalid feature extractor type.
|
|
"""
|
|
if inplace_batchnorm_update:
|
|
raise ValueError('inplace batchnorm updates not supported.')
|
|
feature_type = feature_extractor_config.type
|
|
first_stage_features_stride = (
|
|
feature_extractor_config.first_stage_features_stride)
|
|
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
|
|
|
|
if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
|
|
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
|
|
feature_type))
|
|
feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
|
|
feature_type]
|
|
return feature_extractor_class(
|
|
is_training, first_stage_features_stride,
|
|
batch_norm_trainable, reuse_weights=reuse_weights)
|
|
|
|
|
|
def _build_faster_rcnn_keras_feature_extractor(
|
|
feature_extractor_config, is_training,
|
|
inplace_batchnorm_update=False):
|
|
"""Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.
|
|
|
|
Args:
|
|
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
|
|
faster_rcnn.proto.
|
|
is_training: True if this feature extractor is being built for training.
|
|
inplace_batchnorm_update: Whether to update batch_norm inplace during
|
|
training. This is required for batch norm to work correctly on TPUs. When
|
|
this is false, user must add a control dependency on
|
|
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
|
|
norm moving average parameters.
|
|
|
|
Returns:
|
|
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.
|
|
|
|
Raises:
|
|
ValueError: On invalid feature extractor type.
|
|
"""
|
|
if inplace_batchnorm_update:
|
|
raise ValueError('inplace batchnorm updates not supported.')
|
|
feature_type = feature_extractor_config.type
|
|
first_stage_features_stride = (
|
|
feature_extractor_config.first_stage_features_stride)
|
|
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
|
|
|
|
if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
|
|
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
|
|
feature_type))
|
|
feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
|
|
feature_type]
|
|
return feature_extractor_class(
|
|
is_training, first_stage_features_stride,
|
|
batch_norm_trainable)
|
|
|
|
|
|
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
|
|
"""Builds a Faster R-CNN or R-FCN detection model based on the model config.
|
|
|
|
Builds R-FCN model if the second_stage_box_predictor in the config is of type
|
|
`rfcn_box_predictor` else builds a Faster R-CNN model.
|
|
|
|
Args:
|
|
frcnn_config: A faster_rcnn.proto object containing the config for the
|
|
desired FasterRCNNMetaArch or RFCNMetaArch.
|
|
is_training: True if this model is being built for training purposes.
|
|
add_summaries: Whether to add tf summaries in the model.
|
|
|
|
Returns:
|
|
FasterRCNNMetaArch based on the config.
|
|
|
|
Raises:
|
|
ValueError: If frcnn_config.type is not recognized (i.e. not registered in
|
|
model_class_map).
|
|
"""
|
|
num_classes = frcnn_config.num_classes
|
|
image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
|
|
|
|
is_keras = (frcnn_config.feature_extractor.type in
|
|
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)
|
|
|
|
if is_keras:
|
|
feature_extractor = _build_faster_rcnn_keras_feature_extractor(
|
|
frcnn_config.feature_extractor, is_training,
|
|
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
|
|
else:
|
|
feature_extractor = _build_faster_rcnn_feature_extractor(
|
|
frcnn_config.feature_extractor, is_training,
|
|
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
|
|
|
|
number_of_stages = frcnn_config.number_of_stages
|
|
first_stage_anchor_generator = anchor_generator_builder.build(
|
|
frcnn_config.first_stage_anchor_generator)
|
|
|
|
first_stage_target_assigner = target_assigner.create_target_assigner(
|
|
'FasterRCNN',
|
|
'proposal',
|
|
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
|
|
first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
|
|
if is_keras:
|
|
first_stage_box_predictor_arg_scope_fn = (
|
|
hyperparams_builder.KerasLayerHyperparams(
|
|
frcnn_config.first_stage_box_predictor_conv_hyperparams))
|
|
else:
|
|
first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
|
|
frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
|
|
first_stage_box_predictor_kernel_size = (
|
|
frcnn_config.first_stage_box_predictor_kernel_size)
|
|
first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
|
|
first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
|
|
use_static_shapes = frcnn_config.use_static_shapes and (
|
|
frcnn_config.use_static_shapes_for_eval or is_training)
|
|
first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
|
|
positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
|
|
is_static=(frcnn_config.use_static_balanced_label_sampler and
|
|
use_static_shapes))
|
|
first_stage_max_proposals = frcnn_config.first_stage_max_proposals
|
|
if (frcnn_config.first_stage_nms_iou_threshold < 0 or
|
|
frcnn_config.first_stage_nms_iou_threshold > 1.0):
|
|
raise ValueError('iou_threshold not in [0, 1.0].')
|
|
if (is_training and frcnn_config.second_stage_batch_size >
|
|
first_stage_max_proposals):
|
|
raise ValueError('second_stage_batch_size should be no greater than '
|
|
'first_stage_max_proposals.')
|
|
first_stage_non_max_suppression_fn = functools.partial(
|
|
post_processing.batch_multiclass_non_max_suppression,
|
|
score_thresh=frcnn_config.first_stage_nms_score_threshold,
|
|
iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
|
|
max_size_per_class=frcnn_config.first_stage_max_proposals,
|
|
max_total_size=frcnn_config.first_stage_max_proposals,
|
|
use_static_shapes=use_static_shapes)
|
|
first_stage_loc_loss_weight = (
|
|
frcnn_config.first_stage_localization_loss_weight)
|
|
first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight
|
|
|
|
initial_crop_size = frcnn_config.initial_crop_size
|
|
maxpool_kernel_size = frcnn_config.maxpool_kernel_size
|
|
maxpool_stride = frcnn_config.maxpool_stride
|
|
|
|
second_stage_target_assigner = target_assigner.create_target_assigner(
|
|
'FasterRCNN',
|
|
'detection',
|
|
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
|
|
if is_keras:
|
|
second_stage_box_predictor = box_predictor_builder.build_keras(
|
|
hyperparams_builder.KerasLayerHyperparams,
|
|
freeze_batchnorm=False,
|
|
inplace_batchnorm_update=False,
|
|
num_predictions_per_location_list=[1],
|
|
box_predictor_config=frcnn_config.second_stage_box_predictor,
|
|
is_training=is_training,
|
|
num_classes=num_classes)
|
|
else:
|
|
second_stage_box_predictor = box_predictor_builder.build(
|
|
hyperparams_builder.build,
|
|
frcnn_config.second_stage_box_predictor,
|
|
is_training=is_training,
|
|
num_classes=num_classes)
|
|
second_stage_batch_size = frcnn_config.second_stage_batch_size
|
|
second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
|
|
positive_fraction=frcnn_config.second_stage_balance_fraction,
|
|
is_static=(frcnn_config.use_static_balanced_label_sampler and
|
|
use_static_shapes))
|
|
(second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
|
|
) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
|
|
second_stage_localization_loss_weight = (
|
|
frcnn_config.second_stage_localization_loss_weight)
|
|
second_stage_classification_loss = (
|
|
losses_builder.build_faster_rcnn_classification_loss(
|
|
frcnn_config.second_stage_classification_loss))
|
|
second_stage_classification_loss_weight = (
|
|
frcnn_config.second_stage_classification_loss_weight)
|
|
second_stage_mask_prediction_loss_weight = (
|
|
frcnn_config.second_stage_mask_prediction_loss_weight)
|
|
|
|
hard_example_miner = None
|
|
if frcnn_config.HasField('hard_example_miner'):
|
|
hard_example_miner = losses_builder.build_hard_example_miner(
|
|
frcnn_config.hard_example_miner,
|
|
second_stage_classification_loss_weight,
|
|
second_stage_localization_loss_weight)
|
|
|
|
crop_and_resize_fn = (
|
|
ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize
|
|
else ops.native_crop_and_resize)
|
|
clip_anchors_to_image = (
|
|
frcnn_config.clip_anchors_to_image)
|
|
|
|
common_kwargs = {
|
|
'is_training': is_training,
|
|
'num_classes': num_classes,
|
|
'image_resizer_fn': image_resizer_fn,
|
|
'feature_extractor': feature_extractor,
|
|
'number_of_stages': number_of_stages,
|
|
'first_stage_anchor_generator': first_stage_anchor_generator,
|
|
'first_stage_target_assigner': first_stage_target_assigner,
|
|
'first_stage_atrous_rate': first_stage_atrous_rate,
|
|
'first_stage_box_predictor_arg_scope_fn':
|
|
first_stage_box_predictor_arg_scope_fn,
|
|
'first_stage_box_predictor_kernel_size':
|
|
first_stage_box_predictor_kernel_size,
|
|
'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
|
|
'first_stage_minibatch_size': first_stage_minibatch_size,
|
|
'first_stage_sampler': first_stage_sampler,
|
|
'first_stage_non_max_suppression_fn': first_stage_non_max_suppression_fn,
|
|
'first_stage_max_proposals': first_stage_max_proposals,
|
|
'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
|
|
'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
|
|
'second_stage_target_assigner': second_stage_target_assigner,
|
|
'second_stage_batch_size': second_stage_batch_size,
|
|
'second_stage_sampler': second_stage_sampler,
|
|
'second_stage_non_max_suppression_fn':
|
|
second_stage_non_max_suppression_fn,
|
|
'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
|
|
'second_stage_localization_loss_weight':
|
|
second_stage_localization_loss_weight,
|
|
'second_stage_classification_loss':
|
|
second_stage_classification_loss,
|
|
'second_stage_classification_loss_weight':
|
|
second_stage_classification_loss_weight,
|
|
'hard_example_miner': hard_example_miner,
|
|
'add_summaries': add_summaries,
|
|
'crop_and_resize_fn': crop_and_resize_fn,
|
|
'clip_anchors_to_image': clip_anchors_to_image,
|
|
'use_static_shapes': use_static_shapes,
|
|
'resize_masks': frcnn_config.resize_masks
|
|
}
|
|
|
|
if (isinstance(second_stage_box_predictor,
|
|
rfcn_box_predictor.RfcnBoxPredictor) or
|
|
isinstance(second_stage_box_predictor,
|
|
rfcn_keras_box_predictor.RfcnKerasBoxPredictor)):
|
|
return rfcn_meta_arch.RFCNMetaArch(
|
|
second_stage_rfcn_box_predictor=second_stage_box_predictor,
|
|
**common_kwargs)
|
|
else:
|
|
return faster_rcnn_meta_arch.FasterRCNNMetaArch(
|
|
initial_crop_size=initial_crop_size,
|
|
maxpool_kernel_size=maxpool_kernel_size,
|
|
maxpool_stride=maxpool_stride,
|
|
second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
|
|
second_stage_mask_prediction_loss_weight=(
|
|
second_stage_mask_prediction_loss_weight),
|
|
**common_kwargs)
|