|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Functions to build DetectionModel training optimizers."""
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
from object_detection.utils import learning_schedules
|
|
|
|
|
|
def build(optimizer_config, global_step=None):
|
|
"""Create optimizer based on config.
|
|
|
|
Args:
|
|
optimizer_config: A Optimizer proto message.
|
|
global_step: A variable representing the current step.
|
|
If None, defaults to tf.train.get_or_create_global_step()
|
|
|
|
Returns:
|
|
An optimizer and a list of variables for summary.
|
|
|
|
Raises:
|
|
ValueError: when using an unsupported input data type.
|
|
"""
|
|
optimizer_type = optimizer_config.WhichOneof('optimizer')
|
|
optimizer = None
|
|
|
|
summary_vars = []
|
|
if optimizer_type == 'rms_prop_optimizer':
|
|
config = optimizer_config.rms_prop_optimizer
|
|
learning_rate = _create_learning_rate(config.learning_rate,
|
|
global_step=global_step)
|
|
summary_vars.append(learning_rate)
|
|
optimizer = tf.train.RMSPropOptimizer(
|
|
learning_rate,
|
|
decay=config.decay,
|
|
momentum=config.momentum_optimizer_value,
|
|
epsilon=config.epsilon)
|
|
|
|
if optimizer_type == 'momentum_optimizer':
|
|
config = optimizer_config.momentum_optimizer
|
|
learning_rate = _create_learning_rate(config.learning_rate,
|
|
global_step=global_step)
|
|
summary_vars.append(learning_rate)
|
|
optimizer = tf.train.MomentumOptimizer(
|
|
learning_rate,
|
|
momentum=config.momentum_optimizer_value)
|
|
|
|
if optimizer_type == 'adam_optimizer':
|
|
config = optimizer_config.adam_optimizer
|
|
learning_rate = _create_learning_rate(config.learning_rate,
|
|
global_step=global_step)
|
|
summary_vars.append(learning_rate)
|
|
optimizer = tf.train.AdamOptimizer(learning_rate)
|
|
|
|
|
|
if optimizer is None:
|
|
raise ValueError('Optimizer %s not supported.' % optimizer_type)
|
|
|
|
if optimizer_config.use_moving_average:
|
|
optimizer = tf.contrib.opt.MovingAverageOptimizer(
|
|
optimizer, average_decay=optimizer_config.moving_average_decay)
|
|
|
|
return optimizer, summary_vars
|
|
|
|
|
|
def _create_learning_rate(learning_rate_config, global_step=None):
|
|
"""Create optimizer learning rate based on config.
|
|
|
|
Args:
|
|
learning_rate_config: A LearningRate proto message.
|
|
global_step: A variable representing the current step.
|
|
If None, defaults to tf.train.get_or_create_global_step()
|
|
|
|
Returns:
|
|
A learning rate.
|
|
|
|
Raises:
|
|
ValueError: when using an unsupported input data type.
|
|
"""
|
|
if global_step is None:
|
|
global_step = tf.train.get_or_create_global_step()
|
|
learning_rate = None
|
|
learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
|
|
if learning_rate_type == 'constant_learning_rate':
|
|
config = learning_rate_config.constant_learning_rate
|
|
learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
|
|
name='learning_rate')
|
|
|
|
if learning_rate_type == 'exponential_decay_learning_rate':
|
|
config = learning_rate_config.exponential_decay_learning_rate
|
|
learning_rate = learning_schedules.exponential_decay_with_burnin(
|
|
global_step,
|
|
config.initial_learning_rate,
|
|
config.decay_steps,
|
|
config.decay_factor,
|
|
burnin_learning_rate=config.burnin_learning_rate,
|
|
burnin_steps=config.burnin_steps,
|
|
min_learning_rate=config.min_learning_rate,
|
|
staircase=config.staircase)
|
|
|
|
if learning_rate_type == 'manual_step_learning_rate':
|
|
config = learning_rate_config.manual_step_learning_rate
|
|
if not config.schedule:
|
|
raise ValueError('Empty learning rate schedule.')
|
|
learning_rate_step_boundaries = [x.step for x in config.schedule]
|
|
learning_rate_sequence = [config.initial_learning_rate]
|
|
learning_rate_sequence += [x.learning_rate for x in config.schedule]
|
|
learning_rate = learning_schedules.manual_stepping(
|
|
global_step, learning_rate_step_boundaries,
|
|
learning_rate_sequence, config.warmup)
|
|
|
|
if learning_rate_type == 'cosine_decay_learning_rate':
|
|
config = learning_rate_config.cosine_decay_learning_rate
|
|
learning_rate = learning_schedules.cosine_decay_with_warmup(
|
|
global_step,
|
|
config.learning_rate_base,
|
|
config.total_steps,
|
|
config.warmup_learning_rate,
|
|
config.warmup_steps,
|
|
config.hold_base_rate_steps)
|
|
|
|
if learning_rate is None:
|
|
raise ValueError('Learning_rate %s not supported.' % learning_rate_type)
|
|
|
|
return learning_rate
|