|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Builder function for post processing operations."""
|
|
import functools
|
|
|
|
import tensorflow as tf
|
|
from object_detection.builders import calibration_builder
|
|
from object_detection.core import post_processing
|
|
from object_detection.protos import post_processing_pb2
|
|
|
|
|
|
def build(post_processing_config):
|
|
"""Builds callables for post-processing operations.
|
|
|
|
Builds callables for non-max suppression, score conversion, and (optionally)
|
|
calibration based on the configuration.
|
|
|
|
Non-max suppression callable takes `boxes`, `scores`, and optionally
|
|
`clip_window`, `parallel_iterations` `masks, and `scope` as inputs. It returns
|
|
`nms_boxes`, `nms_scores`, `nms_classes` `nms_masks` and `num_detections`. See
|
|
post_processing.batch_multiclass_non_max_suppression for the type and shape
|
|
of these tensors.
|
|
|
|
Score converter callable should be called with `input` tensor. The callable
|
|
returns the output from one of 3 tf operations based on the configuration -
|
|
tf.identity, tf.sigmoid or tf.nn.softmax. If a calibration config is provided,
|
|
score_converter also applies calibration transformations, as defined in
|
|
calibration_builder.py. See tensorflow documentation for argument and return
|
|
value descriptions.
|
|
|
|
Args:
|
|
post_processing_config: post_processing.proto object containing the
|
|
parameters for the post-processing operations.
|
|
|
|
Returns:
|
|
non_max_suppressor_fn: Callable for non-max suppression.
|
|
score_converter_fn: Callable for score conversion.
|
|
|
|
Raises:
|
|
ValueError: if the post_processing_config is of incorrect type.
|
|
"""
|
|
if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
|
|
raise ValueError('post_processing_config not of type '
|
|
'post_processing_pb2.Postprocessing.')
|
|
non_max_suppressor_fn = _build_non_max_suppressor(
|
|
post_processing_config.batch_non_max_suppression)
|
|
score_converter_fn = _build_score_converter(
|
|
post_processing_config.score_converter,
|
|
post_processing_config.logit_scale)
|
|
if post_processing_config.HasField('calibration_config'):
|
|
score_converter_fn = _build_calibrated_score_converter(
|
|
score_converter_fn,
|
|
post_processing_config.calibration_config)
|
|
return non_max_suppressor_fn, score_converter_fn
|
|
|
|
|
|
def _build_non_max_suppressor(nms_config):
|
|
"""Builds non-max suppresson based on the nms config.
|
|
|
|
Args:
|
|
nms_config: post_processing_pb2.PostProcessing.BatchNonMaxSuppression proto.
|
|
|
|
Returns:
|
|
non_max_suppressor_fn: Callable non-max suppressor.
|
|
|
|
Raises:
|
|
ValueError: On incorrect iou_threshold or on incompatible values of
|
|
max_total_detections and max_detections_per_class.
|
|
"""
|
|
if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
|
|
raise ValueError('iou_threshold not in [0, 1.0].')
|
|
if nms_config.max_detections_per_class > nms_config.max_total_detections:
|
|
raise ValueError('max_detections_per_class should be no greater than '
|
|
'max_total_detections.')
|
|
non_max_suppressor_fn = functools.partial(
|
|
post_processing.batch_multiclass_non_max_suppression,
|
|
score_thresh=nms_config.score_threshold,
|
|
iou_thresh=nms_config.iou_threshold,
|
|
max_size_per_class=nms_config.max_detections_per_class,
|
|
max_total_size=nms_config.max_total_detections,
|
|
use_static_shapes=nms_config.use_static_shapes,
|
|
use_class_agnostic_nms=nms_config.use_class_agnostic_nms,
|
|
max_classes_per_detection=nms_config.max_classes_per_detection)
|
|
return non_max_suppressor_fn
|
|
|
|
|
|
def _score_converter_fn_with_logit_scale(tf_score_converter_fn, logit_scale):
|
|
"""Create a function to scale logits then apply a Tensorflow function."""
|
|
def score_converter_fn(logits):
|
|
scaled_logits = tf.divide(logits, logit_scale, name='scale_logits')
|
|
return tf_score_converter_fn(scaled_logits, name='convert_scores')
|
|
score_converter_fn.__name__ = '%s_with_logit_scale' % (
|
|
tf_score_converter_fn.__name__)
|
|
return score_converter_fn
|
|
|
|
|
|
def _build_score_converter(score_converter_config, logit_scale):
|
|
"""Builds score converter based on the config.
|
|
|
|
Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
|
|
the config.
|
|
|
|
Args:
|
|
score_converter_config: post_processing_pb2.PostProcessing.score_converter.
|
|
logit_scale: temperature to use for SOFTMAX score_converter.
|
|
|
|
Returns:
|
|
Callable score converter op.
|
|
|
|
Raises:
|
|
ValueError: On unknown score converter.
|
|
"""
|
|
if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
|
|
return _score_converter_fn_with_logit_scale(tf.identity, logit_scale)
|
|
if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
|
|
return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale)
|
|
if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
|
|
return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale)
|
|
raise ValueError('Unknown score converter.')
|
|
|
|
|
|
def _build_calibrated_score_converter(score_converter_fn, calibration_config):
|
|
"""Wraps a score_converter_fn, adding a calibration step.
|
|
|
|
Builds a score converter function witha calibration transformation according
|
|
to calibration_builder.py. Calibration applies positive monotonic
|
|
transformations to inputs (i.e. score ordering is strictly preserved or
|
|
adjacent scores are mapped to the same score). When calibration is
|
|
class-agnostic, the highest-scoring class remains unchanged, unless two
|
|
adjacent scores are mapped to the same value and one class arbitrarily
|
|
selected to break the tie. In per-class calibration, it's possible (though
|
|
rare in practice) that the highest-scoring class will change, since positive
|
|
monotonicity is only required to hold within each class.
|
|
|
|
Args:
|
|
score_converter_fn: callable that takes logit scores as input.
|
|
calibration_config: post_processing_pb2.PostProcessing.calibration_config.
|
|
|
|
Returns:
|
|
Callable calibrated score coverter op.
|
|
"""
|
|
calibration_fn = calibration_builder.build(calibration_config)
|
|
def calibrated_score_converter_fn(logits):
|
|
converted_logits = score_converter_fn(logits)
|
|
return calibration_fn(converted_logits)
|
|
calibrated_score_converter_fn.__name__ = (
|
|
'calibrate_with_%s' % calibration_config.WhichOneof('calibrator'))
|
|
return calibrated_score_converter_fn
|