|
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
r"""Runs evaluation using OpenImages groundtruth and predictions.
|
|
|
|
Uses Open Images Challenge 2018, 2019 metrics
|
|
|
|
Example usage:
|
|
python models/research/object_detection/metrics/oid_od_challenge_evaluation.py \
|
|
--input_annotations_boxes=/path/to/input/annotations-human-bbox.csv \
|
|
--input_annotations_labels=/path/to/input/annotations-label.csv \
|
|
--input_class_labelmap=/path/to/input/class_labelmap.pbtxt \
|
|
--input_predictions=/path/to/input/predictions.csv \
|
|
--output_metrics=/path/to/output/metric.csv \
|
|
--input_annotations_segm=[/path/to/input/annotations-human-mask.csv] \
|
|
|
|
If optional flag has_masks is True, Mask column is also expected in CSV.
|
|
|
|
CSVs with bounding box annotations, instance segmentations and image label
|
|
can be downloaded from the Open Images Challenge website:
|
|
https://storage.googleapis.com/openimages/web/challenge.html
|
|
The format of the input csv and the metrics itself are described on the
|
|
challenge website as well.
|
|
|
|
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
import pandas as pd
|
|
from google.protobuf import text_format
|
|
|
|
from object_detection.metrics import io_utils
|
|
from object_detection.metrics import oid_challenge_evaluation_utils as utils
|
|
from object_detection.protos import string_int_label_map_pb2
|
|
from object_detection.utils import object_detection_evaluation
|
|
|
|
flags.DEFINE_string('input_annotations_boxes', None,
|
|
'File with groundtruth boxes annotations.')
|
|
flags.DEFINE_string('input_annotations_labels', None,
|
|
'File with groundtruth labels annotations.')
|
|
flags.DEFINE_string(
|
|
'input_predictions', None,
|
|
"""File with detection predictions; NOTE: no postprocessing is applied in the evaluation script."""
|
|
)
|
|
flags.DEFINE_string('input_class_labelmap', None,
|
|
'Open Images Challenge labelmap.')
|
|
flags.DEFINE_string('output_metrics', None, 'Output file with csv metrics.')
|
|
flags.DEFINE_string(
|
|
'input_annotations_segm', None,
|
|
'File with groundtruth instance segmentation annotations [OPTIONAL].')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
def _load_labelmap(labelmap_path):
|
|
"""Loads labelmap from the labelmap path.
|
|
|
|
Args:
|
|
labelmap_path: Path to the labelmap.
|
|
|
|
Returns:
|
|
A dictionary mapping class name to class numerical id
|
|
A list with dictionaries, one dictionary per category.
|
|
"""
|
|
|
|
label_map = string_int_label_map_pb2.StringIntLabelMap()
|
|
with open(labelmap_path, 'r') as fid:
|
|
label_map_string = fid.read()
|
|
text_format.Merge(label_map_string, label_map)
|
|
labelmap_dict = {}
|
|
categories = []
|
|
for item in label_map.item:
|
|
labelmap_dict[item.name] = item.id
|
|
categories.append({'id': item.id, 'name': item.name})
|
|
return labelmap_dict, categories
|
|
|
|
|
|
def main(unused_argv):
|
|
flags.mark_flag_as_required('input_annotations_boxes')
|
|
flags.mark_flag_as_required('input_annotations_labels')
|
|
flags.mark_flag_as_required('input_predictions')
|
|
flags.mark_flag_as_required('input_class_labelmap')
|
|
flags.mark_flag_as_required('output_metrics')
|
|
|
|
all_location_annotations = pd.read_csv(FLAGS.input_annotations_boxes)
|
|
all_label_annotations = pd.read_csv(FLAGS.input_annotations_labels)
|
|
all_label_annotations.rename(
|
|
columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True)
|
|
|
|
is_instance_segmentation_eval = False
|
|
if FLAGS.input_annotations_segm:
|
|
is_instance_segmentation_eval = True
|
|
all_segm_annotations = pd.read_csv(FLAGS.input_annotations_segm)
|
|
# Note: this part is unstable as it requires the float point numbers in both
|
|
# csvs are exactly the same;
|
|
# Will be replaced by more stable solution: merge on LabelName and ImageID
|
|
# and filter down by IoU.
|
|
all_location_annotations = utils.merge_boxes_and_masks(
|
|
all_location_annotations, all_segm_annotations)
|
|
all_annotations = pd.concat([all_location_annotations, all_label_annotations])
|
|
|
|
class_label_map, categories = _load_labelmap(FLAGS.input_class_labelmap)
|
|
challenge_evaluator = (
|
|
object_detection_evaluation.OpenImagesChallengeEvaluator(
|
|
categories, evaluate_masks=is_instance_segmentation_eval))
|
|
|
|
for _, groundtruth in enumerate(all_annotations.groupby('ImageID')):
|
|
image_id, image_groundtruth = groundtruth
|
|
groundtruth_dictionary = utils.build_groundtruth_dictionary(
|
|
image_groundtruth, class_label_map)
|
|
challenge_evaluator.add_single_ground_truth_image_info(
|
|
image_id, groundtruth_dictionary)
|
|
|
|
all_predictions = pd.read_csv(FLAGS.input_predictions)
|
|
for _, prediction_data in enumerate(all_predictions.groupby('ImageID')):
|
|
image_id, image_predictions = prediction_data
|
|
prediction_dictionary = utils.build_predictions_dictionary(
|
|
image_predictions, class_label_map)
|
|
challenge_evaluator.add_single_detected_image_info(image_id,
|
|
prediction_dictionary)
|
|
|
|
metrics = challenge_evaluator.evaluate()
|
|
|
|
with open(FLAGS.output_metrics, 'w') as fid:
|
|
io_utils.write_csv(fid, metrics)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|