You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

83 lines
3.3 KiB

syntax = "proto2";
package object_detection.protos;
// Message for configuring DetectionModel evaluation jobs (eval.py).
message EvalConfig {
optional uint32 batch_size = 25 [default=1];
// Number of visualization images to generate.
optional uint32 num_visualizations = 1 [default=10];
// Number of examples to process of evaluation.
optional uint32 num_examples = 2 [default=5000, deprecated=true];
// How often to run evaluation.
optional uint32 eval_interval_secs = 3 [default=300];
// Maximum number of times to run evaluation. If set to 0, will run forever.
optional uint32 max_evals = 4 [default=0, deprecated=true];
// Whether the TensorFlow graph used for evaluation should be saved to disk.
optional bool save_graph = 5 [default=false];
// Path to directory to store visualizations in. If empty, visualization
// images are not exported (only shown on Tensorboard).
optional string visualization_export_dir = 6 [default=""];
// BNS name of the TensorFlow master.
optional string eval_master = 7 [default=""];
// Type of metrics to use for evaluation.
repeated string metrics_set = 8;
// Path to export detections to COCO compatible JSON format.
optional string export_path = 9 [default=''];
// Option to not read groundtruth labels and only export detections to
// COCO-compatible JSON file.
optional bool ignore_groundtruth = 10 [default=false];
// Use exponential moving averages of variables for evaluation.
// TODO(rathodv): When this is false make sure the model is constructed
// without moving averages in restore_fn.
optional bool use_moving_averages = 11 [default=false];
// Whether to evaluate instance masks.
// Note that since there is no evaluation code currently for instance
// segmenation this option is unused.
optional bool eval_instance_masks = 12 [default=false];
// Minimum score threshold for a detected object box to be visualized
optional float min_score_threshold = 13 [default=0.5];
// Maximum number of detections to visualize
optional int32 max_num_boxes_to_visualize = 14 [default=20];
// When drawing a single detection, each label is by default visualized as
// <label name> : <label score>. One can skip the name or/and score using the
// following fields:
optional bool skip_scores = 15 [default=false];
optional bool skip_labels = 16 [default=false];
// Whether to show groundtruth boxes in addition to detected boxes in
// visualizations.
optional bool visualize_groundtruth_boxes = 17 [default=false];
// Box color for visualizing groundtruth boxes.
optional string groundtruth_box_visualization_color = 18 [default="black"];
// Whether to keep image identifier in filename when exported to
// visualization_export_dir.
optional bool keep_image_id_for_visualization_export = 19 [default=false];
// Whether to retain original images (i.e. not pre-processed) in the tensor
// dictionary, so that they can be displayed in Tensorboard.
optional bool retain_original_images = 23 [default=true];
// If True, additionally include per-category metrics.
optional bool include_metrics_per_category = 24 [default=false];
// Recall range within which precision should be computed.
optional float recall_lower_bound = 26 [default = 0.0];
optional float recall_upper_bound = 27 [default = 1.0];
}