|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.shape_utils."""
-
- import numpy as np
- import tensorflow as tf
-
- from object_detection.utils import shape_utils
-
-
- class UtilTest(tf.test.TestCase):
-
- def test_pad_tensor_using_integer_input(self):
- t1 = tf.constant([1], dtype=tf.int32)
- pad_t1 = shape_utils.pad_tensor(t1, 2)
- t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
- pad_t2 = shape_utils.pad_tensor(t2, 2)
-
- self.assertEqual(2, pad_t1.get_shape()[0])
- self.assertEqual(2, pad_t2.get_shape()[0])
-
- with self.test_session() as sess:
- pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2])
- self.assertAllEqual([1, 0], pad_t1_result)
- self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
-
- def test_pad_tensor_using_tensor_input(self):
- t1 = tf.constant([1], dtype=tf.int32)
- pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2))
- t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
- pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2))
-
- with self.test_session() as sess:
- pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2])
- self.assertAllEqual([1, 0], pad_t1_result)
- self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
-
- def test_clip_tensor_using_integer_input(self):
- t1 = tf.constant([1, 2, 3], dtype=tf.int32)
- clip_t1 = shape_utils.clip_tensor(t1, 2)
- t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
- clip_t2 = shape_utils.clip_tensor(t2, 2)
-
- self.assertEqual(2, clip_t1.get_shape()[0])
- self.assertEqual(2, clip_t2.get_shape()[0])
-
- with self.test_session() as sess:
- clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2])
- self.assertAllEqual([1, 2], clip_t1_result)
- self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
-
- def test_clip_tensor_using_tensor_input(self):
- t1 = tf.constant([1, 2, 3], dtype=tf.int32)
- clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2))
- t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
- clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2))
-
- with self.test_session() as sess:
- clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2])
- self.assertAllEqual([1, 2], clip_t1_result)
- self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
-
- def test_pad_or_clip_tensor_using_integer_input(self):
- t1 = tf.constant([1], dtype=tf.int32)
- tt1 = shape_utils.pad_or_clip_tensor(t1, 2)
- t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
- tt2 = shape_utils.pad_or_clip_tensor(t2, 2)
-
- t3 = tf.constant([1, 2, 3], dtype=tf.int32)
- tt3 = shape_utils.clip_tensor(t3, 2)
- t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
- tt4 = shape_utils.clip_tensor(t4, 2)
-
- self.assertEqual(2, tt1.get_shape()[0])
- self.assertEqual(2, tt2.get_shape()[0])
- self.assertEqual(2, tt3.get_shape()[0])
- self.assertEqual(2, tt4.get_shape()[0])
-
- with self.test_session() as sess:
- tt1_result, tt2_result, tt3_result, tt4_result = sess.run(
- [tt1, tt2, tt3, tt4])
- self.assertAllEqual([1, 0], tt1_result)
- self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
- self.assertAllEqual([1, 2], tt3_result)
- self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
-
- def test_pad_or_clip_tensor_using_tensor_input(self):
- t1 = tf.constant([1], dtype=tf.int32)
- tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2))
- t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
- tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2))
-
- t3 = tf.constant([1, 2, 3], dtype=tf.int32)
- tt3 = shape_utils.clip_tensor(t3, tf.constant(2))
- t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
- tt4 = shape_utils.clip_tensor(t4, tf.constant(2))
-
- with self.test_session() as sess:
- tt1_result, tt2_result, tt3_result, tt4_result = sess.run(
- [tt1, tt2, tt3, tt4])
- self.assertAllEqual([1, 0], tt1_result)
- self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
- self.assertAllEqual([1, 2], tt3_result)
- self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
-
- def test_combines_static_dynamic_shape(self):
- tensor = tf.placeholder(tf.float32, shape=(None, 2, 3))
- combined_shape = shape_utils.combined_static_and_dynamic_shape(
- tensor)
- self.assertTrue(tf.contrib.framework.is_tensor(combined_shape[0]))
- self.assertListEqual(combined_shape[1:], [2, 3])
-
- def test_pad_or_clip_nd_tensor(self):
- tensor_placeholder = tf.placeholder(tf.float32, [None, 5, 4, 7])
- output_tensor = shape_utils.pad_or_clip_nd(
- tensor_placeholder, [None, 3, 5, tf.constant(6)])
-
- self.assertAllEqual(output_tensor.shape.as_list(), [None, 3, 5, None])
-
- with self.test_session() as sess:
- output_tensor_np = sess.run(
- output_tensor,
- feed_dict={
- tensor_placeholder: np.random.rand(2, 5, 4, 7),
- })
-
- self.assertAllEqual(output_tensor_np.shape, [2, 3, 5, 6])
-
-
- class StaticOrDynamicMapFnTest(tf.test.TestCase):
-
- def test_with_dynamic_shape(self):
- def fn(input_tensor):
- return tf.reduce_sum(input_tensor)
- input_tensor = tf.placeholder(tf.float32, shape=(None, 2))
- map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
-
- op_names = [op.name for op in tf.get_default_graph().get_operations()]
- self.assertTrue(any(['map' == op_name[:3] for op_name in op_names]))
-
- with self.test_session() as sess:
- result1 = sess.run(
- map_fn_output, feed_dict={
- input_tensor: [[1, 2], [3, 1], [0, 4]]})
- result2 = sess.run(
- map_fn_output, feed_dict={
- input_tensor: [[-1, 1], [0, 9]]})
- self.assertAllEqual(result1, [3, 4, 4])
- self.assertAllEqual(result2, [0, 9])
-
- def test_with_static_shape(self):
- def fn(input_tensor):
- return tf.reduce_sum(input_tensor)
- input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32)
- map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
-
- op_names = [op.name for op in tf.get_default_graph().get_operations()]
- self.assertTrue(all(['map' != op_name[:3] for op_name in op_names]))
-
- with self.test_session() as sess:
- result = sess.run(map_fn_output)
- self.assertAllEqual(result, [3, 4, 4])
-
- def test_with_multiple_dynamic_shapes(self):
- def fn(elems):
- input_tensor, scalar_index_tensor = elems
- return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
-
- input_tensor = tf.placeholder(tf.float32, shape=(None, 3))
- scalar_index_tensor = tf.placeholder(tf.int32, shape=(None, 1))
- map_fn_output = shape_utils.static_or_dynamic_map_fn(
- fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
-
- op_names = [op.name for op in tf.get_default_graph().get_operations()]
- self.assertTrue(any(['map' == op_name[:3] for op_name in op_names]))
-
- with self.test_session() as sess:
- result1 = sess.run(
- map_fn_output, feed_dict={
- input_tensor: [[1, 2, 3], [4, 5, -1], [0, 6, 9]],
- scalar_index_tensor: [[0], [2], [1]],
- })
- result2 = sess.run(
- map_fn_output, feed_dict={
- input_tensor: [[-1, 1, 0], [3, 9, 30]],
- scalar_index_tensor: [[1], [0]]
- })
- self.assertAllEqual(result1, [1, -1, 6])
- self.assertAllEqual(result2, [1, 3])
-
- def test_with_multiple_static_shapes(self):
- def fn(elems):
- input_tensor, scalar_index_tensor = elems
- return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
-
- input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]],
- dtype=tf.float32)
- scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32)
- map_fn_output = shape_utils.static_or_dynamic_map_fn(
- fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
-
- op_names = [op.name for op in tf.get_default_graph().get_operations()]
- self.assertTrue(all(['map' != op_name[:3] for op_name in op_names]))
-
- with self.test_session() as sess:
- result = sess.run(map_fn_output)
- self.assertAllEqual(result, [1, -1, 6])
-
- def test_fails_with_nested_input(self):
- def fn(input_tensor):
- return input_tensor
- input_tensor1 = tf.constant([1])
- input_tensor2 = tf.constant([2])
- with self.assertRaisesRegexp(
- ValueError, '`elems` must be a Tensor or list of Tensors.'):
- shape_utils.static_or_dynamic_map_fn(
- fn, [input_tensor1, [input_tensor2]], dtype=tf.float32)
-
-
- class CheckMinImageShapeTest(tf.test.TestCase):
-
- def test_check_min_image_dim_static_shape(self):
- input_tensor = tf.constant(np.zeros([1, 42, 42, 3]))
- _ = shape_utils.check_min_image_dim(33, input_tensor)
-
- with self.assertRaisesRegexp(
- ValueError, 'image size must be >= 64 in both height and width.'):
- _ = shape_utils.check_min_image_dim(64, input_tensor)
-
- def test_check_min_image_dim_dynamic_shape(self):
- input_placeholder = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- image_tensor = shape_utils.check_min_image_dim(33, input_placeholder)
-
- with self.test_session() as sess:
- sess.run(image_tensor,
- feed_dict={input_placeholder: np.zeros([1, 42, 42, 3])})
- with self.assertRaises(tf.errors.InvalidArgumentError):
- sess.run(image_tensor,
- feed_dict={input_placeholder: np.zeros([1, 32, 32, 3])})
-
-
- class AssertShapeEqualTest(tf.test.TestCase):
-
- def test_unequal_static_shape_raises_exception(self):
- shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
- shape_b = tf.constant(np.zeros([4, 2, 3, 1]))
- with self.assertRaisesRegexp(
- ValueError, 'Unequal shapes'):
- shape_utils.assert_shape_equal(
- shape_utils.combined_static_and_dynamic_shape(shape_a),
- shape_utils.combined_static_and_dynamic_shape(shape_b))
-
- def test_equal_static_shape_succeeds(self):
- shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
- shape_b = tf.constant(np.zeros([4, 2, 2, 1]))
- with self.test_session() as sess:
- op = shape_utils.assert_shape_equal(
- shape_utils.combined_static_and_dynamic_shape(shape_a),
- shape_utils.combined_static_and_dynamic_shape(shape_b))
- sess.run(op)
-
- def test_unequal_dynamic_shape_raises_tf_assert(self):
- tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- op = shape_utils.assert_shape_equal(
- shape_utils.combined_static_and_dynamic_shape(tensor_a),
- shape_utils.combined_static_and_dynamic_shape(tensor_b))
- with self.test_session() as sess:
- with self.assertRaises(tf.errors.InvalidArgumentError):
- sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
- tensor_b: np.zeros([1, 4, 4, 3])})
-
- def test_equal_dynamic_shape_succeeds(self):
- tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- op = shape_utils.assert_shape_equal(
- shape_utils.combined_static_and_dynamic_shape(tensor_a),
- shape_utils.combined_static_and_dynamic_shape(tensor_b))
- with self.test_session() as sess:
- sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
- tensor_b: np.zeros([1, 2, 2, 3])})
-
- def test_unequal_static_shape_along_first_dim_raises_exception(self):
- shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
- shape_b = tf.constant(np.zeros([6, 2, 3, 1]))
- with self.assertRaisesRegexp(
- ValueError, 'Unequal first dimension'):
- shape_utils.assert_shape_equal_along_first_dimension(
- shape_utils.combined_static_and_dynamic_shape(shape_a),
- shape_utils.combined_static_and_dynamic_shape(shape_b))
-
- def test_equal_static_shape_along_first_dim_succeeds(self):
- shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
- shape_b = tf.constant(np.zeros([4, 7, 2]))
- with self.test_session() as sess:
- op = shape_utils.assert_shape_equal_along_first_dimension(
- shape_utils.combined_static_and_dynamic_shape(shape_a),
- shape_utils.combined_static_and_dynamic_shape(shape_b))
- sess.run(op)
-
- def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self):
- tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
- tensor_b = tf.placeholder(tf.float32, shape=[None, None, 3])
- op = shape_utils.assert_shape_equal_along_first_dimension(
- shape_utils.combined_static_and_dynamic_shape(tensor_a),
- shape_utils.combined_static_and_dynamic_shape(tensor_b))
- with self.test_session() as sess:
- with self.assertRaises(tf.errors.InvalidArgumentError):
- sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
- tensor_b: np.zeros([2, 4, 3])})
-
- def test_equal_dynamic_shape_along_first_dim_succeeds(self):
- tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
- tensor_b = tf.placeholder(tf.float32, shape=[None])
- op = shape_utils.assert_shape_equal_along_first_dimension(
- shape_utils.combined_static_and_dynamic_shape(tensor_a),
- shape_utils.combined_static_and_dynamic_shape(tensor_b))
- with self.test_session() as sess:
- sess.run(op, feed_dict={tensor_a: np.zeros([5, 2, 2, 3]),
- tensor_b: np.zeros([5])})
-
-
- class FlattenExpandDimensionTest(tf.test.TestCase):
-
- def test_flatten_given_dims(self):
- inputs = tf.random_uniform([5, 2, 10, 10, 3])
- actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3)
- expected_flattened = tf.reshape(inputs, [5, 20, 10, 3])
- with self.test_session() as sess:
- (actual_flattened_np,
- expected_flattened_np) = sess.run([actual_flattened, expected_flattened])
- self.assertAllClose(expected_flattened_np, actual_flattened_np)
-
- def test_raises_value_error_incorrect_dimensions(self):
- inputs = tf.random_uniform([5, 2, 10, 10, 3])
- with self.assertRaises(ValueError):
- shape_utils.flatten_dimensions(inputs, first=0, last=6)
-
- def test_flatten_first_two_dimensions(self):
- inputs = tf.constant(
- [
- [[1, 2], [3, 4]],
- [[5, 6], [7, 8]],
- [[9, 10], [11, 12]]
- ], dtype=tf.int32)
- flattened_tensor = shape_utils.flatten_first_n_dimensions(
- inputs, 2)
- with self.test_session() as sess:
- flattened_tensor_out = sess.run(flattened_tensor)
-
- expected_output = [[1, 2],
- [3, 4],
- [5, 6],
- [7, 8],
- [9, 10],
- [11, 12]]
- self.assertAllEqual(expected_output, flattened_tensor_out)
-
- def test_expand_first_dimension(self):
- inputs = tf.constant(
- [
- [1, 2],
- [3, 4],
- [5, 6],
- [7, 8],
- [9, 10],
- [11, 12]
- ], dtype=tf.int32)
- dims = [3, 2]
- expanded_tensor = shape_utils.expand_first_dimension(
- inputs, dims)
- with self.test_session() as sess:
- expanded_tensor_out = sess.run(expanded_tensor)
-
- expected_output = [
- [[1, 2], [3, 4]],
- [[5, 6], [7, 8]],
- [[9, 10], [11, 12]]]
- self.assertAllEqual(expected_output, expanded_tensor_out)
-
- def test_expand_first_dimension_with_incompatible_dims(self):
- inputs_default = tf.constant(
- [
- [[1, 2]],
- [[3, 4]],
- [[5, 6]],
- ], dtype=tf.int32)
- inputs = tf.placeholder_with_default(inputs_default, [None, 1, 2])
- dims = [3, 2]
- expanded_tensor = shape_utils.expand_first_dimension(
- inputs, dims)
- with self.test_session() as sess:
- with self.assertRaises(tf.errors.InvalidArgumentError):
- sess.run(expanded_tensor)
-
-
- if __name__ == '__main__':
- tf.test.main()
|