|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Tests for object_detection.utils.shape_utils."""
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import shape_utils
|
|
|
|
|
|
class UtilTest(tf.test.TestCase):
|
|
|
|
def test_pad_tensor_using_integer_input(self):
|
|
t1 = tf.constant([1], dtype=tf.int32)
|
|
pad_t1 = shape_utils.pad_tensor(t1, 2)
|
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
|
|
pad_t2 = shape_utils.pad_tensor(t2, 2)
|
|
|
|
self.assertEqual(2, pad_t1.get_shape()[0])
|
|
self.assertEqual(2, pad_t2.get_shape()[0])
|
|
|
|
with self.test_session() as sess:
|
|
pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2])
|
|
self.assertAllEqual([1, 0], pad_t1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
|
|
|
|
def test_pad_tensor_using_tensor_input(self):
|
|
t1 = tf.constant([1], dtype=tf.int32)
|
|
pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2))
|
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
|
|
pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2))
|
|
|
|
with self.test_session() as sess:
|
|
pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2])
|
|
self.assertAllEqual([1, 0], pad_t1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
|
|
|
|
def test_clip_tensor_using_integer_input(self):
|
|
t1 = tf.constant([1, 2, 3], dtype=tf.int32)
|
|
clip_t1 = shape_utils.clip_tensor(t1, 2)
|
|
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
|
|
clip_t2 = shape_utils.clip_tensor(t2, 2)
|
|
|
|
self.assertEqual(2, clip_t1.get_shape()[0])
|
|
self.assertEqual(2, clip_t2.get_shape()[0])
|
|
|
|
with self.test_session() as sess:
|
|
clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2])
|
|
self.assertAllEqual([1, 2], clip_t1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
|
|
|
|
def test_clip_tensor_using_tensor_input(self):
|
|
t1 = tf.constant([1, 2, 3], dtype=tf.int32)
|
|
clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2))
|
|
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
|
|
clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2))
|
|
|
|
with self.test_session() as sess:
|
|
clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2])
|
|
self.assertAllEqual([1, 2], clip_t1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
|
|
|
|
def test_pad_or_clip_tensor_using_integer_input(self):
|
|
t1 = tf.constant([1], dtype=tf.int32)
|
|
tt1 = shape_utils.pad_or_clip_tensor(t1, 2)
|
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
|
|
tt2 = shape_utils.pad_or_clip_tensor(t2, 2)
|
|
|
|
t3 = tf.constant([1, 2, 3], dtype=tf.int32)
|
|
tt3 = shape_utils.clip_tensor(t3, 2)
|
|
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
|
|
tt4 = shape_utils.clip_tensor(t4, 2)
|
|
|
|
self.assertEqual(2, tt1.get_shape()[0])
|
|
self.assertEqual(2, tt2.get_shape()[0])
|
|
self.assertEqual(2, tt3.get_shape()[0])
|
|
self.assertEqual(2, tt4.get_shape()[0])
|
|
|
|
with self.test_session() as sess:
|
|
tt1_result, tt2_result, tt3_result, tt4_result = sess.run(
|
|
[tt1, tt2, tt3, tt4])
|
|
self.assertAllEqual([1, 0], tt1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
|
|
self.assertAllEqual([1, 2], tt3_result)
|
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
|
|
|
|
def test_pad_or_clip_tensor_using_tensor_input(self):
|
|
t1 = tf.constant([1], dtype=tf.int32)
|
|
tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2))
|
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
|
|
tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2))
|
|
|
|
t3 = tf.constant([1, 2, 3], dtype=tf.int32)
|
|
tt3 = shape_utils.clip_tensor(t3, tf.constant(2))
|
|
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
|
|
tt4 = shape_utils.clip_tensor(t4, tf.constant(2))
|
|
|
|
with self.test_session() as sess:
|
|
tt1_result, tt2_result, tt3_result, tt4_result = sess.run(
|
|
[tt1, tt2, tt3, tt4])
|
|
self.assertAllEqual([1, 0], tt1_result)
|
|
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
|
|
self.assertAllEqual([1, 2], tt3_result)
|
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
|
|
|
|
def test_combines_static_dynamic_shape(self):
|
|
tensor = tf.placeholder(tf.float32, shape=(None, 2, 3))
|
|
combined_shape = shape_utils.combined_static_and_dynamic_shape(
|
|
tensor)
|
|
self.assertTrue(tf.contrib.framework.is_tensor(combined_shape[0]))
|
|
self.assertListEqual(combined_shape[1:], [2, 3])
|
|
|
|
def test_pad_or_clip_nd_tensor(self):
|
|
tensor_placeholder = tf.placeholder(tf.float32, [None, 5, 4, 7])
|
|
output_tensor = shape_utils.pad_or_clip_nd(
|
|
tensor_placeholder, [None, 3, 5, tf.constant(6)])
|
|
|
|
self.assertAllEqual(output_tensor.shape.as_list(), [None, 3, 5, None])
|
|
|
|
with self.test_session() as sess:
|
|
output_tensor_np = sess.run(
|
|
output_tensor,
|
|
feed_dict={
|
|
tensor_placeholder: np.random.rand(2, 5, 4, 7),
|
|
})
|
|
|
|
self.assertAllEqual(output_tensor_np.shape, [2, 3, 5, 6])
|
|
|
|
|
|
class StaticOrDynamicMapFnTest(tf.test.TestCase):
|
|
|
|
def test_with_dynamic_shape(self):
|
|
def fn(input_tensor):
|
|
return tf.reduce_sum(input_tensor)
|
|
input_tensor = tf.placeholder(tf.float32, shape=(None, 2))
|
|
map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
|
|
|
|
op_names = [op.name for op in tf.get_default_graph().get_operations()]
|
|
self.assertTrue(any(['map' == op_name[:3] for op_name in op_names]))
|
|
|
|
with self.test_session() as sess:
|
|
result1 = sess.run(
|
|
map_fn_output, feed_dict={
|
|
input_tensor: [[1, 2], [3, 1], [0, 4]]})
|
|
result2 = sess.run(
|
|
map_fn_output, feed_dict={
|
|
input_tensor: [[-1, 1], [0, 9]]})
|
|
self.assertAllEqual(result1, [3, 4, 4])
|
|
self.assertAllEqual(result2, [0, 9])
|
|
|
|
def test_with_static_shape(self):
|
|
def fn(input_tensor):
|
|
return tf.reduce_sum(input_tensor)
|
|
input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32)
|
|
map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
|
|
|
|
op_names = [op.name for op in tf.get_default_graph().get_operations()]
|
|
self.assertTrue(all(['map' != op_name[:3] for op_name in op_names]))
|
|
|
|
with self.test_session() as sess:
|
|
result = sess.run(map_fn_output)
|
|
self.assertAllEqual(result, [3, 4, 4])
|
|
|
|
def test_with_multiple_dynamic_shapes(self):
|
|
def fn(elems):
|
|
input_tensor, scalar_index_tensor = elems
|
|
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
|
|
|
|
input_tensor = tf.placeholder(tf.float32, shape=(None, 3))
|
|
scalar_index_tensor = tf.placeholder(tf.int32, shape=(None, 1))
|
|
map_fn_output = shape_utils.static_or_dynamic_map_fn(
|
|
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
|
|
|
|
op_names = [op.name for op in tf.get_default_graph().get_operations()]
|
|
self.assertTrue(any(['map' == op_name[:3] for op_name in op_names]))
|
|
|
|
with self.test_session() as sess:
|
|
result1 = sess.run(
|
|
map_fn_output, feed_dict={
|
|
input_tensor: [[1, 2, 3], [4, 5, -1], [0, 6, 9]],
|
|
scalar_index_tensor: [[0], [2], [1]],
|
|
})
|
|
result2 = sess.run(
|
|
map_fn_output, feed_dict={
|
|
input_tensor: [[-1, 1, 0], [3, 9, 30]],
|
|
scalar_index_tensor: [[1], [0]]
|
|
})
|
|
self.assertAllEqual(result1, [1, -1, 6])
|
|
self.assertAllEqual(result2, [1, 3])
|
|
|
|
def test_with_multiple_static_shapes(self):
|
|
def fn(elems):
|
|
input_tensor, scalar_index_tensor = elems
|
|
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
|
|
|
|
input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]],
|
|
dtype=tf.float32)
|
|
scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32)
|
|
map_fn_output = shape_utils.static_or_dynamic_map_fn(
|
|
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
|
|
|
|
op_names = [op.name for op in tf.get_default_graph().get_operations()]
|
|
self.assertTrue(all(['map' != op_name[:3] for op_name in op_names]))
|
|
|
|
with self.test_session() as sess:
|
|
result = sess.run(map_fn_output)
|
|
self.assertAllEqual(result, [1, -1, 6])
|
|
|
|
def test_fails_with_nested_input(self):
|
|
def fn(input_tensor):
|
|
return input_tensor
|
|
input_tensor1 = tf.constant([1])
|
|
input_tensor2 = tf.constant([2])
|
|
with self.assertRaisesRegexp(
|
|
ValueError, '`elems` must be a Tensor or list of Tensors.'):
|
|
shape_utils.static_or_dynamic_map_fn(
|
|
fn, [input_tensor1, [input_tensor2]], dtype=tf.float32)
|
|
|
|
|
|
class CheckMinImageShapeTest(tf.test.TestCase):
|
|
|
|
def test_check_min_image_dim_static_shape(self):
|
|
input_tensor = tf.constant(np.zeros([1, 42, 42, 3]))
|
|
_ = shape_utils.check_min_image_dim(33, input_tensor)
|
|
|
|
with self.assertRaisesRegexp(
|
|
ValueError, 'image size must be >= 64 in both height and width.'):
|
|
_ = shape_utils.check_min_image_dim(64, input_tensor)
|
|
|
|
def test_check_min_image_dim_dynamic_shape(self):
|
|
input_placeholder = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
image_tensor = shape_utils.check_min_image_dim(33, input_placeholder)
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(image_tensor,
|
|
feed_dict={input_placeholder: np.zeros([1, 42, 42, 3])})
|
|
with self.assertRaises(tf.errors.InvalidArgumentError):
|
|
sess.run(image_tensor,
|
|
feed_dict={input_placeholder: np.zeros([1, 32, 32, 3])})
|
|
|
|
|
|
class AssertShapeEqualTest(tf.test.TestCase):
|
|
|
|
def test_unequal_static_shape_raises_exception(self):
|
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
|
|
shape_b = tf.constant(np.zeros([4, 2, 3, 1]))
|
|
with self.assertRaisesRegexp(
|
|
ValueError, 'Unequal shapes'):
|
|
shape_utils.assert_shape_equal(
|
|
shape_utils.combined_static_and_dynamic_shape(shape_a),
|
|
shape_utils.combined_static_and_dynamic_shape(shape_b))
|
|
|
|
def test_equal_static_shape_succeeds(self):
|
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
|
|
shape_b = tf.constant(np.zeros([4, 2, 2, 1]))
|
|
with self.test_session() as sess:
|
|
op = shape_utils.assert_shape_equal(
|
|
shape_utils.combined_static_and_dynamic_shape(shape_a),
|
|
shape_utils.combined_static_and_dynamic_shape(shape_b))
|
|
sess.run(op)
|
|
|
|
def test_unequal_dynamic_shape_raises_tf_assert(self):
|
|
tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
op = shape_utils.assert_shape_equal(
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_a),
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_b))
|
|
with self.test_session() as sess:
|
|
with self.assertRaises(tf.errors.InvalidArgumentError):
|
|
sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
|
|
tensor_b: np.zeros([1, 4, 4, 3])})
|
|
|
|
def test_equal_dynamic_shape_succeeds(self):
|
|
tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
op = shape_utils.assert_shape_equal(
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_a),
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_b))
|
|
with self.test_session() as sess:
|
|
sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
|
|
tensor_b: np.zeros([1, 2, 2, 3])})
|
|
|
|
def test_unequal_static_shape_along_first_dim_raises_exception(self):
|
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
|
|
shape_b = tf.constant(np.zeros([6, 2, 3, 1]))
|
|
with self.assertRaisesRegexp(
|
|
ValueError, 'Unequal first dimension'):
|
|
shape_utils.assert_shape_equal_along_first_dimension(
|
|
shape_utils.combined_static_and_dynamic_shape(shape_a),
|
|
shape_utils.combined_static_and_dynamic_shape(shape_b))
|
|
|
|
def test_equal_static_shape_along_first_dim_succeeds(self):
|
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
|
|
shape_b = tf.constant(np.zeros([4, 7, 2]))
|
|
with self.test_session() as sess:
|
|
op = shape_utils.assert_shape_equal_along_first_dimension(
|
|
shape_utils.combined_static_and_dynamic_shape(shape_a),
|
|
shape_utils.combined_static_and_dynamic_shape(shape_b))
|
|
sess.run(op)
|
|
|
|
def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self):
|
|
tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
|
|
tensor_b = tf.placeholder(tf.float32, shape=[None, None, 3])
|
|
op = shape_utils.assert_shape_equal_along_first_dimension(
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_a),
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_b))
|
|
with self.test_session() as sess:
|
|
with self.assertRaises(tf.errors.InvalidArgumentError):
|
|
sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
|
|
tensor_b: np.zeros([2, 4, 3])})
|
|
|
|
def test_equal_dynamic_shape_along_first_dim_succeeds(self):
|
|
tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
|
|
tensor_b = tf.placeholder(tf.float32, shape=[None])
|
|
op = shape_utils.assert_shape_equal_along_first_dimension(
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_a),
|
|
shape_utils.combined_static_and_dynamic_shape(tensor_b))
|
|
with self.test_session() as sess:
|
|
sess.run(op, feed_dict={tensor_a: np.zeros([5, 2, 2, 3]),
|
|
tensor_b: np.zeros([5])})
|
|
|
|
|
|
class FlattenExpandDimensionTest(tf.test.TestCase):
|
|
|
|
def test_flatten_given_dims(self):
|
|
inputs = tf.random_uniform([5, 2, 10, 10, 3])
|
|
actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3)
|
|
expected_flattened = tf.reshape(inputs, [5, 20, 10, 3])
|
|
with self.test_session() as sess:
|
|
(actual_flattened_np,
|
|
expected_flattened_np) = sess.run([actual_flattened, expected_flattened])
|
|
self.assertAllClose(expected_flattened_np, actual_flattened_np)
|
|
|
|
def test_raises_value_error_incorrect_dimensions(self):
|
|
inputs = tf.random_uniform([5, 2, 10, 10, 3])
|
|
with self.assertRaises(ValueError):
|
|
shape_utils.flatten_dimensions(inputs, first=0, last=6)
|
|
|
|
def test_flatten_first_two_dimensions(self):
|
|
inputs = tf.constant(
|
|
[
|
|
[[1, 2], [3, 4]],
|
|
[[5, 6], [7, 8]],
|
|
[[9, 10], [11, 12]]
|
|
], dtype=tf.int32)
|
|
flattened_tensor = shape_utils.flatten_first_n_dimensions(
|
|
inputs, 2)
|
|
with self.test_session() as sess:
|
|
flattened_tensor_out = sess.run(flattened_tensor)
|
|
|
|
expected_output = [[1, 2],
|
|
[3, 4],
|
|
[5, 6],
|
|
[7, 8],
|
|
[9, 10],
|
|
[11, 12]]
|
|
self.assertAllEqual(expected_output, flattened_tensor_out)
|
|
|
|
def test_expand_first_dimension(self):
|
|
inputs = tf.constant(
|
|
[
|
|
[1, 2],
|
|
[3, 4],
|
|
[5, 6],
|
|
[7, 8],
|
|
[9, 10],
|
|
[11, 12]
|
|
], dtype=tf.int32)
|
|
dims = [3, 2]
|
|
expanded_tensor = shape_utils.expand_first_dimension(
|
|
inputs, dims)
|
|
with self.test_session() as sess:
|
|
expanded_tensor_out = sess.run(expanded_tensor)
|
|
|
|
expected_output = [
|
|
[[1, 2], [3, 4]],
|
|
[[5, 6], [7, 8]],
|
|
[[9, 10], [11, 12]]]
|
|
self.assertAllEqual(expected_output, expanded_tensor_out)
|
|
|
|
def test_expand_first_dimension_with_incompatible_dims(self):
|
|
inputs_default = tf.constant(
|
|
[
|
|
[[1, 2]],
|
|
[[3, 4]],
|
|
[[5, 6]],
|
|
], dtype=tf.int32)
|
|
inputs = tf.placeholder_with_default(inputs_default, [None, 1, 2])
|
|
dims = [3, 2]
|
|
expanded_tensor = shape_utils.expand_first_dimension(
|
|
inputs, dims)
|
|
with self.test_session() as sess:
|
|
with self.assertRaises(tf.errors.InvalidArgumentError):
|
|
sess.run(expanded_tensor)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|