|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """A set of functions that are used for visualization.
-
- These functions often receive an image, perform some visualization on the image.
- The functions do not return a value, instead they modify the image itself.
-
- """
- import abc
- import collections
- # Set headless-friendly backend.
- import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements
- import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
- import numpy as np
- import PIL.Image as Image
- import PIL.ImageColor as ImageColor
- import PIL.ImageDraw as ImageDraw
- import PIL.ImageFont as ImageFont
- import six
- import tensorflow as tf
-
- from object_detection.core import standard_fields as fields
- from object_detection.utils import shape_utils
-
- _TITLE_LEFT_MARGIN = 10
- _TITLE_TOP_MARGIN = 10
- STANDARD_COLORS = [
- 'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
- 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
- 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
- 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
- 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
- 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
- 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
- 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
- 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
- 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
- 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
- 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
- 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
- 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
- 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
- 'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
- 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
- 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
- 'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
- 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
- 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
- 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
- 'WhiteSmoke', 'Yellow', 'YellowGreen'
- ]
-
-
- def _get_multiplier_for_color_randomness():
- """Returns a multiplier to get semi-random colors from successive indices.
-
- This function computes a prime number, p, in the range [2, 17] that:
- - is closest to len(STANDARD_COLORS) / 10
- - does not divide len(STANDARD_COLORS)
-
- If no prime numbers in that range satisfy the constraints, p is returned as 1.
-
- Once p is established, it can be used as a multiplier to select
- non-consecutive colors from STANDARD_COLORS:
- colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
- """
- num_colors = len(STANDARD_COLORS)
- prime_candidates = [5, 7, 11, 13, 17]
-
- # Remove all prime candidates that divide the number of colors.
- prime_candidates = [p for p in prime_candidates if num_colors % p]
- if not prime_candidates:
- return 1
-
- # Return the closest prime number to num_colors / 10.
- abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
- num_candidates = len(abs_distance)
- inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
- return prime_candidates[inds[0]]
-
-
- def save_image_array_as_png(image, output_path):
- """Saves an image (represented as a numpy array) to PNG.
-
- Args:
- image: a numpy array with shape [height, width, 3].
- output_path: path to which image should be written.
- """
- image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
- with tf.gfile.Open(output_path, 'w') as fid:
- image_pil.save(fid, 'PNG')
-
-
- def encode_image_array_as_png_str(image):
- """Encodes a numpy array into a PNG string.
-
- Args:
- image: a numpy array with shape [height, width, 3].
-
- Returns:
- PNG encoded image string.
- """
- image_pil = Image.fromarray(np.uint8(image))
- output = six.BytesIO()
- image_pil.save(output, format='PNG')
- png_string = output.getvalue()
- output.close()
- return png_string
-
-
- def draw_bounding_box_on_image_array(image,
- ymin,
- xmin,
- ymax,
- xmax,
- color='red',
- thickness=4,
- display_str_list=(),
- use_normalized_coordinates=True):
- """Adds a bounding box to an image (numpy array).
-
- Bounding box coordinates can be specified in either absolute (pixel) or
- normalized coordinates by setting the use_normalized_coordinates argument.
-
- Args:
- image: a numpy array with shape [height, width, 3].
- ymin: ymin of bounding box.
- xmin: xmin of bounding box.
- ymax: ymax of bounding box.
- xmax: xmax of bounding box.
- color: color to draw bounding box. Default is red.
- thickness: line thickness. Default value is 4.
- display_str_list: list of strings to display in box
- (each to be shown on its own line).
- use_normalized_coordinates: If True (default), treat coordinates
- ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
- coordinates as absolute.
- """
- image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
- draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
- thickness, display_str_list,
- use_normalized_coordinates)
- np.copyto(image, np.array(image_pil))
-
-
- def draw_bounding_box_on_image(image,
- ymin,
- xmin,
- ymax,
- xmax,
- color='red',
- thickness=4,
- display_str_list=(),
- use_normalized_coordinates=True):
- """Adds a bounding box to an image.
-
- Bounding box coordinates can be specified in either absolute (pixel) or
- normalized coordinates by setting the use_normalized_coordinates argument.
-
- Each string in display_str_list is displayed on a separate line above the
- bounding box in black text on a rectangle filled with the input 'color'.
- If the top of the bounding box extends to the edge of the image, the strings
- are displayed below the bounding box.
-
- Args:
- image: a PIL.Image object.
- ymin: ymin of bounding box.
- xmin: xmin of bounding box.
- ymax: ymax of bounding box.
- xmax: xmax of bounding box.
- color: color to draw bounding box. Default is red.
- thickness: line thickness. Default value is 4.
- display_str_list: list of strings to display in box
- (each to be shown on its own line).
- use_normalized_coordinates: If True (default), treat coordinates
- ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
- coordinates as absolute.
- """
- draw = ImageDraw.Draw(image)
- im_width, im_height = image.size
- if use_normalized_coordinates:
- (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
- ymin * im_height, ymax * im_height)
- else:
- (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
- draw.line([(left, top), (left, bottom), (right, bottom),
- (right, top), (left, top)], width=thickness, fill=color)
- try:
- font = ImageFont.truetype('arial.ttf', 24)
- except IOError:
- font = ImageFont.load_default()
-
- # If the total height of the display strings added to the top of the bounding
- # box exceeds the top of the image, stack the strings below the bounding box
- # instead of above.
- display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
- # Each display_str has a top and bottom margin of 0.05x.
- total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
-
- if top > total_display_str_height:
- text_bottom = top
- else:
- text_bottom = bottom + total_display_str_height
- # Reverse list and print from bottom to top.
- for display_str in display_str_list[::-1]:
- text_width, text_height = font.getsize(display_str)
- margin = np.ceil(0.05 * text_height)
- draw.rectangle(
- [(left, text_bottom - text_height - 2 * margin), (left + text_width,
- text_bottom)],
- fill=color)
- draw.text(
- (left + margin, text_bottom - text_height - margin),
- display_str,
- fill='black',
- font=font)
- text_bottom -= text_height - 2 * margin
-
-
- def draw_bounding_boxes_on_image_array(image,
- boxes,
- color='red',
- thickness=4,
- display_str_list_list=()):
- """Draws bounding boxes on image (numpy array).
-
- Args:
- image: a numpy array object.
- boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
- The coordinates are in normalized format between [0, 1].
- color: color to draw bounding box. Default is red.
- thickness: line thickness. Default value is 4.
- display_str_list_list: list of list of strings.
- a list of strings for each bounding box.
- The reason to pass a list of strings for a
- bounding box is that it might contain
- multiple labels.
-
- Raises:
- ValueError: if boxes is not a [N, 4] array
- """
- image_pil = Image.fromarray(image)
- draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
- display_str_list_list)
- np.copyto(image, np.array(image_pil))
-
-
- def draw_bounding_boxes_on_image(image,
- boxes,
- color='red',
- thickness=4,
- display_str_list_list=()):
- """Draws bounding boxes on image.
-
- Args:
- image: a PIL.Image object.
- boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
- The coordinates are in normalized format between [0, 1].
- color: color to draw bounding box. Default is red.
- thickness: line thickness. Default value is 4.
- display_str_list_list: list of list of strings.
- a list of strings for each bounding box.
- The reason to pass a list of strings for a
- bounding box is that it might contain
- multiple labels.
-
- Raises:
- ValueError: if boxes is not a [N, 4] array
- """
- boxes_shape = boxes.shape
- if not boxes_shape:
- return
- if len(boxes_shape) != 2 or boxes_shape[1] != 4:
- raise ValueError('Input must be of size [N, 4]')
- for i in range(boxes_shape[0]):
- display_str_list = ()
- if display_str_list_list:
- display_str_list = display_str_list_list[i]
- draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
- boxes[i, 3], color, thickness, display_str_list)
-
-
- def create_visualization_fn(category_index, include_masks=False,
- include_keypoints=False, include_track_ids=False,
- **kwargs):
- """Constructs a visualization function that can be wrapped in a py_func.
-
- py_funcs only accept positional arguments. This function returns a suitable
- function with the correct positional argument mapping. The positional
- arguments in order are:
- 0: image
- 1: boxes
- 2: classes
- 3: scores
- [4-6]: masks (optional)
- [4-6]: keypoints (optional)
- [4-6]: track_ids (optional)
-
- -- Example 1 --
- vis_only_masks_fn = create_visualization_fn(category_index,
- include_masks=True, include_keypoints=False, include_track_ids=False,
- **kwargs)
- image = tf.py_func(vis_only_masks_fn,
- inp=[image, boxes, classes, scores, masks],
- Tout=tf.uint8)
-
- -- Example 2 --
- vis_masks_and_track_ids_fn = create_visualization_fn(category_index,
- include_masks=True, include_keypoints=False, include_track_ids=True,
- **kwargs)
- image = tf.py_func(vis_masks_and_track_ids_fn,
- inp=[image, boxes, classes, scores, masks, track_ids],
- Tout=tf.uint8)
-
- Args:
- category_index: a dict that maps integer ids to category dicts. e.g.
- {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
- include_masks: Whether masks should be expected as a positional argument in
- the returned function.
- include_keypoints: Whether keypoints should be expected as a positional
- argument in the returned function.
- include_track_ids: Whether track ids should be expected as a positional
- argument in the returned function.
- **kwargs: Additional kwargs that will be passed to
- visualize_boxes_and_labels_on_image_array.
-
- Returns:
- Returns a function that only takes tensors as positional arguments.
- """
-
- def visualization_py_func_fn(*args):
- """Visualization function that can be wrapped in a tf.py_func.
-
- Args:
- *args: First 4 positional arguments must be:
- image - uint8 numpy array with shape (img_height, img_width, 3).
- boxes - a numpy array of shape [N, 4].
- classes - a numpy array of shape [N].
- scores - a numpy array of shape [N] or None.
- -- Optional positional arguments --
- instance_masks - a numpy array of shape [N, image_height, image_width].
- keypoints - a numpy array of shape [N, num_keypoints, 2].
- track_ids - a numpy array of shape [N] with unique track ids.
-
- Returns:
- uint8 numpy array with shape (img_height, img_width, 3) with overlaid
- boxes.
- """
- image = args[0]
- boxes = args[1]
- classes = args[2]
- scores = args[3]
- masks = keypoints = track_ids = None
- pos_arg_ptr = 4 # Positional argument for first optional tensor (masks).
- if include_masks:
- masks = args[pos_arg_ptr]
- pos_arg_ptr += 1
- if include_keypoints:
- keypoints = args[pos_arg_ptr]
- pos_arg_ptr += 1
- if include_track_ids:
- track_ids = args[pos_arg_ptr]
-
- return visualize_boxes_and_labels_on_image_array(
- image,
- boxes,
- classes,
- scores,
- category_index=category_index,
- instance_masks=masks,
- keypoints=keypoints,
- track_ids=track_ids,
- **kwargs)
- return visualization_py_func_fn
-
-
- def _resize_original_image(image, image_shape):
- image = tf.expand_dims(image, 0)
- image = tf.image.resize_images(
- image,
- image_shape,
- method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
- align_corners=True)
- return tf.cast(tf.squeeze(image, 0), tf.uint8)
-
-
- def draw_bounding_boxes_on_image_tensors(images,
- boxes,
- classes,
- scores,
- category_index,
- original_image_spatial_shape=None,
- true_image_shape=None,
- instance_masks=None,
- keypoints=None,
- track_ids=None,
- max_boxes_to_draw=20,
- min_score_thresh=0.2,
- use_normalized_coordinates=True):
- """Draws bounding boxes, masks, and keypoints on batch of image tensors.
-
- Args:
- images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
- channels will be ignored. If C = 1, then we convert the images to RGB
- images.
- boxes: [N, max_detections, 4] float32 tensor of detection boxes.
- classes: [N, max_detections] int tensor of detection classes. Note that
- classes are 1-indexed.
- scores: [N, max_detections] float32 tensor of detection scores.
- category_index: a dict that maps integer ids to category dicts. e.g.
- {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
- original_image_spatial_shape: [N, 2] tensor containing the spatial size of
- the original image.
- true_image_shape: [N, 3] tensor containing the spatial size of unpadded
- original_image.
- instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
- instance masks.
- keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
- with keypoints.
- track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e.
- instance ids for each object). If provided, the color-coding of boxes is
- dictated by these ids, and not classes.
- max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
- min_score_thresh: Minimum score threshold for visualization. Default 0.2.
- use_normalized_coordinates: Whether to assume boxes and kepoints are in
- normalized coordinates (as opposed to absolute coordiantes).
- Default is True.
-
- Returns:
- 4D image tensor of type uint8, with boxes drawn on top.
- """
- # Additional channels are being ignored.
- if images.shape[3] > 3:
- images = images[:, :, :, 0:3]
- elif images.shape[3] == 1:
- images = tf.image.grayscale_to_rgb(images)
- visualization_keyword_args = {
- 'use_normalized_coordinates': use_normalized_coordinates,
- 'max_boxes_to_draw': max_boxes_to_draw,
- 'min_score_thresh': min_score_thresh,
- 'agnostic_mode': False,
- 'line_thickness': 4
- }
- if true_image_shape is None:
- true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
- else:
- true_shapes = true_image_shape
- if original_image_spatial_shape is None:
- original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
- else:
- original_shapes = original_image_spatial_shape
-
- visualize_boxes_fn = create_visualization_fn(
- category_index,
- include_masks=instance_masks is not None,
- include_keypoints=keypoints is not None,
- include_track_ids=track_ids is not None,
- **visualization_keyword_args)
-
- elems = [true_shapes, original_shapes, images, boxes, classes, scores]
- if instance_masks is not None:
- elems.append(instance_masks)
- if keypoints is not None:
- elems.append(keypoints)
- if track_ids is not None:
- elems.append(track_ids)
-
- def draw_boxes(image_and_detections):
- """Draws boxes on image."""
- true_shape = image_and_detections[0]
- original_shape = image_and_detections[1]
- if true_image_shape is not None:
- image = shape_utils.pad_or_clip_nd(image_and_detections[2],
- [true_shape[0], true_shape[1], 3])
- if original_image_spatial_shape is not None:
- image_and_detections[2] = _resize_original_image(image, original_shape)
-
- image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:],
- tf.uint8)
- return image_with_boxes
-
- images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
- return images
-
-
- def draw_side_by_side_evaluation_image(eval_dict,
- category_index,
- max_boxes_to_draw=20,
- min_score_thresh=0.2,
- use_normalized_coordinates=True):
- """Creates a side-by-side image with detections and groundtruth.
-
- Bounding boxes (and instance masks, if available) are visualized on both
- subimages.
-
- Args:
- eval_dict: The evaluation dictionary returned by
- eval_util.result_dict_for_batched_example() or
- eval_util.result_dict_for_single_example().
- category_index: A category index (dictionary) produced from a labelmap.
- max_boxes_to_draw: The maximum number of boxes to draw for detections.
- min_score_thresh: The minimum score threshold for showing detections.
- use_normalized_coordinates: Whether to assume boxes and kepoints are in
- normalized coordinates (as opposed to absolute coordiantes).
- Default is True.
-
- Returns:
- A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left
- corresponds to detections, while the subimage on the right corresponds to
- groundtruth.
- """
- detection_fields = fields.DetectionResultFields()
- input_data_fields = fields.InputDataFields()
-
- images_with_detections_list = []
-
- # Add the batch dimension if the eval_dict is for single example.
- if len(eval_dict[detection_fields.detection_classes].shape) == 1:
- for key in eval_dict:
- if key != input_data_fields.original_image:
- eval_dict[key] = tf.expand_dims(eval_dict[key], 0)
-
- for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
- instance_masks = None
- if detection_fields.detection_masks in eval_dict:
- instance_masks = tf.cast(
- tf.expand_dims(
- eval_dict[detection_fields.detection_masks][indx], axis=0),
- tf.uint8)
- keypoints = None
- if detection_fields.detection_keypoints in eval_dict:
- keypoints = tf.expand_dims(
- eval_dict[detection_fields.detection_keypoints][indx], axis=0)
- groundtruth_instance_masks = None
- if input_data_fields.groundtruth_instance_masks in eval_dict:
- groundtruth_instance_masks = tf.cast(
- tf.expand_dims(
- eval_dict[input_data_fields.groundtruth_instance_masks][indx],
- axis=0), tf.uint8)
-
- images_with_detections = draw_bounding_boxes_on_image_tensors(
- tf.expand_dims(
- eval_dict[input_data_fields.original_image][indx], axis=0),
- tf.expand_dims(
- eval_dict[detection_fields.detection_boxes][indx], axis=0),
- tf.expand_dims(
- eval_dict[detection_fields.detection_classes][indx], axis=0),
- tf.expand_dims(
- eval_dict[detection_fields.detection_scores][indx], axis=0),
- category_index,
- original_image_spatial_shape=tf.expand_dims(
- eval_dict[input_data_fields.original_image_spatial_shape][indx],
- axis=0),
- true_image_shape=tf.expand_dims(
- eval_dict[input_data_fields.true_image_shape][indx], axis=0),
- instance_masks=instance_masks,
- keypoints=keypoints,
- max_boxes_to_draw=max_boxes_to_draw,
- min_score_thresh=min_score_thresh,
- use_normalized_coordinates=use_normalized_coordinates)
- images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
- tf.expand_dims(
- eval_dict[input_data_fields.original_image][indx], axis=0),
- tf.expand_dims(
- eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0),
- tf.expand_dims(
- eval_dict[input_data_fields.groundtruth_classes][indx], axis=0),
- tf.expand_dims(
- tf.ones_like(
- eval_dict[input_data_fields.groundtruth_classes][indx],
- dtype=tf.float32),
- axis=0),
- category_index,
- original_image_spatial_shape=tf.expand_dims(
- eval_dict[input_data_fields.original_image_spatial_shape][indx],
- axis=0),
- true_image_shape=tf.expand_dims(
- eval_dict[input_data_fields.true_image_shape][indx], axis=0),
- instance_masks=groundtruth_instance_masks,
- keypoints=None,
- max_boxes_to_draw=None,
- min_score_thresh=0.0,
- use_normalized_coordinates=use_normalized_coordinates)
- images_with_detections_list.append(
- tf.concat([images_with_detections, images_with_groundtruth], axis=2))
- return images_with_detections_list
-
-
- def draw_keypoints_on_image_array(image,
- keypoints,
- color='red',
- radius=2,
- use_normalized_coordinates=True):
- """Draws keypoints on an image (numpy array).
-
- Args:
- image: a numpy array with shape [height, width, 3].
- keypoints: a numpy array with shape [num_keypoints, 2].
- color: color to draw the keypoints with. Default is red.
- radius: keypoint radius. Default value is 2.
- use_normalized_coordinates: if True (default), treat keypoint values as
- relative to the image. Otherwise treat them as absolute.
- """
- image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
- draw_keypoints_on_image(image_pil, keypoints, color, radius,
- use_normalized_coordinates)
- np.copyto(image, np.array(image_pil))
-
-
- def draw_keypoints_on_image(image,
- keypoints,
- color='red',
- radius=2,
- use_normalized_coordinates=True):
- """Draws keypoints on an image.
-
- Args:
- image: a PIL.Image object.
- keypoints: a numpy array with shape [num_keypoints, 2].
- color: color to draw the keypoints with. Default is red.
- radius: keypoint radius. Default value is 2.
- use_normalized_coordinates: if True (default), treat keypoint values as
- relative to the image. Otherwise treat them as absolute.
- """
- draw = ImageDraw.Draw(image)
- im_width, im_height = image.size
- keypoints_x = [k[1] for k in keypoints]
- keypoints_y = [k[0] for k in keypoints]
- if use_normalized_coordinates:
- keypoints_x = tuple([im_width * x for x in keypoints_x])
- keypoints_y = tuple([im_height * y for y in keypoints_y])
- for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
- draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
- (keypoint_x + radius, keypoint_y + radius)],
- outline=color, fill=color)
-
-
- def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
- """Draws mask on an image.
-
- Args:
- image: uint8 numpy array with shape (img_height, img_height, 3)
- mask: a uint8 numpy array of shape (img_height, img_height) with
- values between either 0 or 1.
- color: color to draw the keypoints with. Default is red.
- alpha: transparency value between 0 and 1. (default: 0.4)
-
- Raises:
- ValueError: On incorrect data type for image or masks.
- """
- if image.dtype != np.uint8:
- raise ValueError('`image` not of type np.uint8')
- if mask.dtype != np.uint8:
- raise ValueError('`mask` not of type np.uint8')
- if np.any(np.logical_and(mask != 1, mask != 0)):
- raise ValueError('`mask` elements should be in [0, 1]')
- if image.shape[:2] != mask.shape:
- raise ValueError('The image has spatial dimensions %s but the mask has '
- 'dimensions %s' % (image.shape[:2], mask.shape))
- rgb = ImageColor.getrgb(color)
- pil_image = Image.fromarray(image)
-
- solid_color = np.expand_dims(
- np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
- pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
- pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
- pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
- np.copyto(image, np.array(pil_image.convert('RGB')))
-
-
- def visualize_boxes_and_labels_on_image_array(
- image,
- boxes,
- classes,
- scores,
- category_index,
- instance_masks=None,
- instance_boundaries=None,
- keypoints=None,
- track_ids=None,
- use_normalized_coordinates=False,
- max_boxes_to_draw=20,
- min_score_thresh=.5,
- agnostic_mode=False,
- line_thickness=4,
- groundtruth_box_visualization_color='black',
- skip_scores=False,
- skip_labels=False,
- skip_track_ids=False):
- """Overlay labeled boxes on an image with formatted scores and label names.
-
- This function groups boxes that correspond to the same location
- and creates a display string for each detection and overlays these
- on the image. Note that this function modifies the image in place, and returns
- that same image.
-
- Args:
- image: uint8 numpy array with shape (img_height, img_width, 3)
- boxes: a numpy array of shape [N, 4]
- classes: a numpy array of shape [N]. Note that class indices are 1-based,
- and match the keys in the label map.
- scores: a numpy array of shape [N] or None. If scores=None, then
- this function assumes that the boxes to be plotted are groundtruth
- boxes and plot all boxes as black with no classes or scores.
- category_index: a dict containing category dictionaries (each holding
- category index `id` and category name `name`) keyed by category indices.
- instance_masks: a numpy array of shape [N, image_height, image_width] with
- values ranging between 0 and 1, can be None.
- instance_boundaries: a numpy array of shape [N, image_height, image_width]
- with values ranging between 0 and 1, can be None.
- keypoints: a numpy array of shape [N, num_keypoints, 2], can
- be None
- track_ids: a numpy array of shape [N] with unique track ids. If provided,
- color-coding of boxes will be determined by these ids, and not the class
- indices.
- use_normalized_coordinates: whether boxes is to be interpreted as
- normalized coordinates or not.
- max_boxes_to_draw: maximum number of boxes to visualize. If None, draw
- all boxes.
- min_score_thresh: minimum score threshold for a box to be visualized
- agnostic_mode: boolean (default: False) controlling whether to evaluate in
- class-agnostic mode or not. This mode will display scores but ignore
- classes.
- line_thickness: integer (default: 4) controlling line width of the boxes.
- groundtruth_box_visualization_color: box color for visualizing groundtruth
- boxes
- skip_scores: whether to skip score when drawing a single detection
- skip_labels: whether to skip label when drawing a single detection
- skip_track_ids: whether to skip track id when drawing a single detection
-
- Returns:
- uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
- """
- # Create a display string (and color) for every box location, group any boxes
- # that correspond to the same location.
- box_to_display_str_map = collections.defaultdict(list)
- box_to_color_map = collections.defaultdict(str)
- box_to_instance_masks_map = {}
- box_to_instance_boundaries_map = {}
- box_to_keypoints_map = collections.defaultdict(list)
- box_to_track_ids_map = {}
- if not max_boxes_to_draw:
- max_boxes_to_draw = boxes.shape[0]
- for i in range(min(max_boxes_to_draw, boxes.shape[0])):
- if scores is None or scores[i] > min_score_thresh:
- box = tuple(boxes[i].tolist())
- if instance_masks is not None:
- box_to_instance_masks_map[box] = instance_masks[i]
- if instance_boundaries is not None:
- box_to_instance_boundaries_map[box] = instance_boundaries[i]
- if keypoints is not None:
- box_to_keypoints_map[box].extend(keypoints[i])
- if track_ids is not None:
- box_to_track_ids_map[box] = track_ids[i]
- if scores is None:
- box_to_color_map[box] = groundtruth_box_visualization_color
- else:
- display_str = ''
- if not skip_labels:
- if not agnostic_mode:
- if classes[i] in category_index.keys():
- class_name = category_index[classes[i]]['name']
- else:
- class_name = 'N/A'
- display_str = str(class_name)
- if not skip_scores:
- if not display_str:
- display_str = '{}%'.format(int(100*scores[i]))
- else:
- display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
- if not skip_track_ids and track_ids is not None:
- if not display_str:
- display_str = 'ID {}'.format(track_ids[i])
- else:
- display_str = '{}: ID {}'.format(display_str, track_ids[i])
- box_to_display_str_map[box].append(display_str)
- if agnostic_mode:
- box_to_color_map[box] = 'DarkOrange'
- elif track_ids is not None:
- prime_multipler = _get_multiplier_for_color_randomness()
- box_to_color_map[box] = STANDARD_COLORS[
- (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
- else:
- box_to_color_map[box] = STANDARD_COLORS[
- classes[i] % len(STANDARD_COLORS)]
-
- # Draw all boxes onto image.
- for box, color in box_to_color_map.items():
- ymin, xmin, ymax, xmax = box
- if instance_masks is not None:
- draw_mask_on_image_array(
- image,
- box_to_instance_masks_map[box],
- color=color
- )
- if instance_boundaries is not None:
- draw_mask_on_image_array(
- image,
- box_to_instance_boundaries_map[box],
- color='red',
- alpha=1.0
- )
- draw_bounding_box_on_image_array(
- image,
- ymin,
- xmin,
- ymax,
- xmax,
- color=color,
- thickness=line_thickness,
- display_str_list=box_to_display_str_map[box],
- use_normalized_coordinates=use_normalized_coordinates)
- if keypoints is not None:
- draw_keypoints_on_image_array(
- image,
- box_to_keypoints_map[box],
- color=color,
- radius=line_thickness / 2,
- use_normalized_coordinates=use_normalized_coordinates)
-
- return image
-
-
- def add_cdf_image_summary(values, name):
- """Adds a tf.summary.image for a CDF plot of the values.
-
- Normalizes `values` such that they sum to 1, plots the cumulative distribution
- function and creates a tf image summary.
-
- Args:
- values: a 1-D float32 tensor containing the values.
- name: name for the image summary.
- """
- def cdf_plot(values):
- """Numpy function to plot CDF."""
- normalized_values = values / np.sum(values)
- sorted_values = np.sort(normalized_values)
- cumulative_values = np.cumsum(sorted_values)
- fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
- / cumulative_values.size)
- fig = plt.figure(frameon=False)
- ax = fig.add_subplot('111')
- ax.plot(fraction_of_examples, cumulative_values)
- ax.set_ylabel('cumulative normalized values')
- ax.set_xlabel('fraction of examples')
- fig.canvas.draw()
- width, height = fig.get_size_inches() * fig.get_dpi()
- image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
- 1, int(height), int(width), 3)
- return image
- cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
- tf.summary.image(name, cdf_plot)
-
-
- def add_hist_image_summary(values, bins, name):
- """Adds a tf.summary.image for a histogram plot of the values.
-
- Plots the histogram of values and creates a tf image summary.
-
- Args:
- values: a 1-D float32 tensor containing the values.
- bins: bin edges which will be directly passed to np.histogram.
- name: name for the image summary.
- """
-
- def hist_plot(values, bins):
- """Numpy function to plot hist."""
- fig = plt.figure(frameon=False)
- ax = fig.add_subplot('111')
- y, x = np.histogram(values, bins=bins)
- ax.plot(x[:-1], y)
- ax.set_ylabel('count')
- ax.set_xlabel('value')
- fig.canvas.draw()
- width, height = fig.get_size_inches() * fig.get_dpi()
- image = np.fromstring(
- fig.canvas.tostring_rgb(), dtype='uint8').reshape(
- 1, int(height), int(width), 3)
- return image
- hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8)
- tf.summary.image(name, hist_plot)
-
-
- class EvalMetricOpsVisualization(object):
- """Abstract base class responsible for visualizations during evaluation.
-
- Currently, summary images are not run during evaluation. One way to produce
- evaluation images in Tensorboard is to provide tf.summary.image strings as
- `value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is
- responsible for accruing images (with overlaid detections and groundtruth)
- and returning a dictionary that can be passed to `eval_metric_ops`.
- """
- __metaclass__ = abc.ABCMeta
-
- def __init__(self,
- category_index,
- max_examples_to_draw=5,
- max_boxes_to_draw=20,
- min_score_thresh=0.2,
- use_normalized_coordinates=True,
- summary_name_prefix='evaluation_image'):
- """Creates an EvalMetricOpsVisualization.
-
- Args:
- category_index: A category index (dictionary) produced from a labelmap.
- max_examples_to_draw: The maximum number of example summaries to produce.
- max_boxes_to_draw: The maximum number of boxes to draw for detections.
- min_score_thresh: The minimum score threshold for showing detections.
- use_normalized_coordinates: Whether to assume boxes and kepoints are in
- normalized coordinates (as opposed to absolute coordiantes).
- Default is True.
- summary_name_prefix: A string prefix for each image summary.
- """
-
- self._category_index = category_index
- self._max_examples_to_draw = max_examples_to_draw
- self._max_boxes_to_draw = max_boxes_to_draw
- self._min_score_thresh = min_score_thresh
- self._use_normalized_coordinates = use_normalized_coordinates
- self._summary_name_prefix = summary_name_prefix
- self._images = []
-
- def clear(self):
- self._images = []
-
- def add_images(self, images):
- """Store a list of images, each with shape [1, H, W, C]."""
- if len(self._images) >= self._max_examples_to_draw:
- return
-
- # Store images and clip list if necessary.
- self._images.extend(images)
- if len(self._images) > self._max_examples_to_draw:
- self._images[self._max_examples_to_draw:] = []
-
- def get_estimator_eval_metric_ops(self, eval_dict):
- """Returns metric ops for use in tf.estimator.EstimatorSpec.
-
- Args:
- eval_dict: A dictionary that holds an image, groundtruth, and detections
- for a batched example. Note that, we use only the first example for
- visualization. See eval_util.result_dict_for_batched_example() for a
- convenient method for constructing such a dictionary. The dictionary
- contains
- fields.InputDataFields.original_image: [batch_size, H, W, 3] image.
- fields.InputDataFields.original_image_spatial_shape: [batch_size, 2]
- tensor containing the size of the original image.
- fields.InputDataFields.true_image_shape: [batch_size, 3]
- tensor containing the spatial size of the upadded original image.
- fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4]
- float32 tensor with groundtruth boxes in range [0.0, 1.0].
- fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes]
- int64 tensor with 1-indexed groundtruth classes.
- fields.InputDataFields.groundtruth_instance_masks - (optional)
- [batch_size, num_boxes, H, W] int64 tensor with instance masks.
- fields.DetectionResultFields.detection_boxes - [batch_size,
- max_num_boxes, 4] float32 tensor with detection boxes in range [0.0,
- 1.0].
- fields.DetectionResultFields.detection_classes - [batch_size,
- max_num_boxes] int64 tensor with 1-indexed detection classes.
- fields.DetectionResultFields.detection_scores - [batch_size,
- max_num_boxes] float32 tensor with detection scores.
- fields.DetectionResultFields.detection_masks - (optional) [batch_size,
- max_num_boxes, H, W] float32 tensor of binarized masks.
- fields.DetectionResultFields.detection_keypoints - (optional)
- [batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with
- keypoints.
-
- Returns:
- A dictionary of image summary names to tuple of (value_op, update_op). The
- `update_op` is the same for all items in the dictionary, and is
- responsible for saving a single side-by-side image with detections and
- groundtruth. Each `value_op` holds the tf.summary.image string for a given
- image.
- """
- if self._max_examples_to_draw == 0:
- return {}
- images = self.images_from_evaluation_dict(eval_dict)
-
- def get_images():
- """Returns a list of images, padded to self._max_images_to_draw."""
- images = self._images
- while len(images) < self._max_examples_to_draw:
- images.append(np.array(0, dtype=np.uint8))
- self.clear()
- return images
-
- def image_summary_or_default_string(summary_name, image):
- """Returns image summaries for non-padded elements."""
- return tf.cond(
- tf.equal(tf.size(tf.shape(image)), 4),
- lambda: tf.summary.image(summary_name, image),
- lambda: tf.constant(''))
-
- if tf.executing_eagerly():
- update_op = self.add_images([[images[0]]])
- image_tensors = get_images()
- else:
- update_op = tf.py_func(self.add_images, [[images[0]]], [])
- image_tensors = tf.py_func(
- get_images, [], [tf.uint8] * self._max_examples_to_draw)
- eval_metric_ops = {}
- for i, image in enumerate(image_tensors):
- summary_name = self._summary_name_prefix + '/' + str(i)
- value_op = image_summary_or_default_string(summary_name, image)
- eval_metric_ops[summary_name] = (value_op, update_op)
- return eval_metric_ops
-
- @abc.abstractmethod
- def images_from_evaluation_dict(self, eval_dict):
- """Converts evaluation dictionary into a list of image tensors.
-
- To be overridden by implementations.
-
- Args:
- eval_dict: A dictionary with all the necessary information for producing
- visualizations.
-
- Returns:
- A list of [1, H, W, C] uint8 tensors.
- """
- raise NotImplementedError
-
-
- class VisualizeSingleFrameDetections(EvalMetricOpsVisualization):
- """Class responsible for single-frame object detection visualizations."""
-
- def __init__(self,
- category_index,
- max_examples_to_draw=5,
- max_boxes_to_draw=20,
- min_score_thresh=0.2,
- use_normalized_coordinates=True,
- summary_name_prefix='Detections_Left_Groundtruth_Right'):
- super(VisualizeSingleFrameDetections, self).__init__(
- category_index=category_index,
- max_examples_to_draw=max_examples_to_draw,
- max_boxes_to_draw=max_boxes_to_draw,
- min_score_thresh=min_score_thresh,
- use_normalized_coordinates=use_normalized_coordinates,
- summary_name_prefix=summary_name_prefix)
-
- def images_from_evaluation_dict(self, eval_dict):
- return draw_side_by_side_evaluation_image(
- eval_dict, self._category_index, self._max_boxes_to_draw,
- self._min_score_thresh, self._use_normalized_coordinates)
|