|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""A set of functions that are used for visualization.
|
|
|
|
These functions often receive an image, perform some visualization on the image.
|
|
The functions do not return a value, instead they modify the image itself.
|
|
|
|
"""
|
|
import abc
|
|
import collections
|
|
# Set headless-friendly backend.
|
|
import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements
|
|
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
|
|
import numpy as np
|
|
import PIL.Image as Image
|
|
import PIL.ImageColor as ImageColor
|
|
import PIL.ImageDraw as ImageDraw
|
|
import PIL.ImageFont as ImageFont
|
|
import six
|
|
import tensorflow as tf
|
|
|
|
from object_detection.core import standard_fields as fields
|
|
from object_detection.utils import shape_utils
|
|
|
|
_TITLE_LEFT_MARGIN = 10
|
|
_TITLE_TOP_MARGIN = 10
|
|
STANDARD_COLORS = [
|
|
'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
|
|
'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
|
|
'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
|
|
'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
|
|
'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
|
|
'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
|
|
'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
|
|
'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
|
|
'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
|
|
'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
|
|
'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
|
|
'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
|
|
'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
|
|
'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
|
|
'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
|
|
'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
|
|
'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
|
|
'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
|
|
'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
|
|
'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
|
|
'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
|
|
'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
|
|
'WhiteSmoke', 'Yellow', 'YellowGreen'
|
|
]
|
|
|
|
|
|
def _get_multiplier_for_color_randomness():
|
|
"""Returns a multiplier to get semi-random colors from successive indices.
|
|
|
|
This function computes a prime number, p, in the range [2, 17] that:
|
|
- is closest to len(STANDARD_COLORS) / 10
|
|
- does not divide len(STANDARD_COLORS)
|
|
|
|
If no prime numbers in that range satisfy the constraints, p is returned as 1.
|
|
|
|
Once p is established, it can be used as a multiplier to select
|
|
non-consecutive colors from STANDARD_COLORS:
|
|
colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
|
|
"""
|
|
num_colors = len(STANDARD_COLORS)
|
|
prime_candidates = [5, 7, 11, 13, 17]
|
|
|
|
# Remove all prime candidates that divide the number of colors.
|
|
prime_candidates = [p for p in prime_candidates if num_colors % p]
|
|
if not prime_candidates:
|
|
return 1
|
|
|
|
# Return the closest prime number to num_colors / 10.
|
|
abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
|
|
num_candidates = len(abs_distance)
|
|
inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
|
|
return prime_candidates[inds[0]]
|
|
|
|
|
|
def save_image_array_as_png(image, output_path):
|
|
"""Saves an image (represented as a numpy array) to PNG.
|
|
|
|
Args:
|
|
image: a numpy array with shape [height, width, 3].
|
|
output_path: path to which image should be written.
|
|
"""
|
|
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
|
with tf.gfile.Open(output_path, 'w') as fid:
|
|
image_pil.save(fid, 'PNG')
|
|
|
|
|
|
def encode_image_array_as_png_str(image):
|
|
"""Encodes a numpy array into a PNG string.
|
|
|
|
Args:
|
|
image: a numpy array with shape [height, width, 3].
|
|
|
|
Returns:
|
|
PNG encoded image string.
|
|
"""
|
|
image_pil = Image.fromarray(np.uint8(image))
|
|
output = six.BytesIO()
|
|
image_pil.save(output, format='PNG')
|
|
png_string = output.getvalue()
|
|
output.close()
|
|
return png_string
|
|
|
|
|
|
def draw_bounding_box_on_image_array(image,
|
|
ymin,
|
|
xmin,
|
|
ymax,
|
|
xmax,
|
|
color='red',
|
|
thickness=4,
|
|
display_str_list=(),
|
|
use_normalized_coordinates=True):
|
|
"""Adds a bounding box to an image (numpy array).
|
|
|
|
Bounding box coordinates can be specified in either absolute (pixel) or
|
|
normalized coordinates by setting the use_normalized_coordinates argument.
|
|
|
|
Args:
|
|
image: a numpy array with shape [height, width, 3].
|
|
ymin: ymin of bounding box.
|
|
xmin: xmin of bounding box.
|
|
ymax: ymax of bounding box.
|
|
xmax: xmax of bounding box.
|
|
color: color to draw bounding box. Default is red.
|
|
thickness: line thickness. Default value is 4.
|
|
display_str_list: list of strings to display in box
|
|
(each to be shown on its own line).
|
|
use_normalized_coordinates: If True (default), treat coordinates
|
|
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
|
|
coordinates as absolute.
|
|
"""
|
|
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
|
draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
|
|
thickness, display_str_list,
|
|
use_normalized_coordinates)
|
|
np.copyto(image, np.array(image_pil))
|
|
|
|
|
|
def draw_bounding_box_on_image(image,
|
|
ymin,
|
|
xmin,
|
|
ymax,
|
|
xmax,
|
|
color='red',
|
|
thickness=4,
|
|
display_str_list=(),
|
|
use_normalized_coordinates=True):
|
|
"""Adds a bounding box to an image.
|
|
|
|
Bounding box coordinates can be specified in either absolute (pixel) or
|
|
normalized coordinates by setting the use_normalized_coordinates argument.
|
|
|
|
Each string in display_str_list is displayed on a separate line above the
|
|
bounding box in black text on a rectangle filled with the input 'color'.
|
|
If the top of the bounding box extends to the edge of the image, the strings
|
|
are displayed below the bounding box.
|
|
|
|
Args:
|
|
image: a PIL.Image object.
|
|
ymin: ymin of bounding box.
|
|
xmin: xmin of bounding box.
|
|
ymax: ymax of bounding box.
|
|
xmax: xmax of bounding box.
|
|
color: color to draw bounding box. Default is red.
|
|
thickness: line thickness. Default value is 4.
|
|
display_str_list: list of strings to display in box
|
|
(each to be shown on its own line).
|
|
use_normalized_coordinates: If True (default), treat coordinates
|
|
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
|
|
coordinates as absolute.
|
|
"""
|
|
draw = ImageDraw.Draw(image)
|
|
im_width, im_height = image.size
|
|
if use_normalized_coordinates:
|
|
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
|
|
ymin * im_height, ymax * im_height)
|
|
else:
|
|
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
|
|
draw.line([(left, top), (left, bottom), (right, bottom),
|
|
(right, top), (left, top)], width=thickness, fill=color)
|
|
try:
|
|
font = ImageFont.truetype('arial.ttf', 24)
|
|
except IOError:
|
|
font = ImageFont.load_default()
|
|
|
|
# If the total height of the display strings added to the top of the bounding
|
|
# box exceeds the top of the image, stack the strings below the bounding box
|
|
# instead of above.
|
|
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
|
|
# Each display_str has a top and bottom margin of 0.05x.
|
|
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
|
|
|
|
if top > total_display_str_height:
|
|
text_bottom = top
|
|
else:
|
|
text_bottom = bottom + total_display_str_height
|
|
# Reverse list and print from bottom to top.
|
|
for display_str in display_str_list[::-1]:
|
|
text_width, text_height = font.getsize(display_str)
|
|
margin = np.ceil(0.05 * text_height)
|
|
draw.rectangle(
|
|
[(left, text_bottom - text_height - 2 * margin), (left + text_width,
|
|
text_bottom)],
|
|
fill=color)
|
|
draw.text(
|
|
(left + margin, text_bottom - text_height - margin),
|
|
display_str,
|
|
fill='black',
|
|
font=font)
|
|
text_bottom -= text_height - 2 * margin
|
|
|
|
|
|
def draw_bounding_boxes_on_image_array(image,
|
|
boxes,
|
|
color='red',
|
|
thickness=4,
|
|
display_str_list_list=()):
|
|
"""Draws bounding boxes on image (numpy array).
|
|
|
|
Args:
|
|
image: a numpy array object.
|
|
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
|
|
The coordinates are in normalized format between [0, 1].
|
|
color: color to draw bounding box. Default is red.
|
|
thickness: line thickness. Default value is 4.
|
|
display_str_list_list: list of list of strings.
|
|
a list of strings for each bounding box.
|
|
The reason to pass a list of strings for a
|
|
bounding box is that it might contain
|
|
multiple labels.
|
|
|
|
Raises:
|
|
ValueError: if boxes is not a [N, 4] array
|
|
"""
|
|
image_pil = Image.fromarray(image)
|
|
draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
|
|
display_str_list_list)
|
|
np.copyto(image, np.array(image_pil))
|
|
|
|
|
|
def draw_bounding_boxes_on_image(image,
|
|
boxes,
|
|
color='red',
|
|
thickness=4,
|
|
display_str_list_list=()):
|
|
"""Draws bounding boxes on image.
|
|
|
|
Args:
|
|
image: a PIL.Image object.
|
|
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
|
|
The coordinates are in normalized format between [0, 1].
|
|
color: color to draw bounding box. Default is red.
|
|
thickness: line thickness. Default value is 4.
|
|
display_str_list_list: list of list of strings.
|
|
a list of strings for each bounding box.
|
|
The reason to pass a list of strings for a
|
|
bounding box is that it might contain
|
|
multiple labels.
|
|
|
|
Raises:
|
|
ValueError: if boxes is not a [N, 4] array
|
|
"""
|
|
boxes_shape = boxes.shape
|
|
if not boxes_shape:
|
|
return
|
|
if len(boxes_shape) != 2 or boxes_shape[1] != 4:
|
|
raise ValueError('Input must be of size [N, 4]')
|
|
for i in range(boxes_shape[0]):
|
|
display_str_list = ()
|
|
if display_str_list_list:
|
|
display_str_list = display_str_list_list[i]
|
|
draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
|
|
boxes[i, 3], color, thickness, display_str_list)
|
|
|
|
|
|
def create_visualization_fn(category_index, include_masks=False,
|
|
include_keypoints=False, include_track_ids=False,
|
|
**kwargs):
|
|
"""Constructs a visualization function that can be wrapped in a py_func.
|
|
|
|
py_funcs only accept positional arguments. This function returns a suitable
|
|
function with the correct positional argument mapping. The positional
|
|
arguments in order are:
|
|
0: image
|
|
1: boxes
|
|
2: classes
|
|
3: scores
|
|
[4-6]: masks (optional)
|
|
[4-6]: keypoints (optional)
|
|
[4-6]: track_ids (optional)
|
|
|
|
-- Example 1 --
|
|
vis_only_masks_fn = create_visualization_fn(category_index,
|
|
include_masks=True, include_keypoints=False, include_track_ids=False,
|
|
**kwargs)
|
|
image = tf.py_func(vis_only_masks_fn,
|
|
inp=[image, boxes, classes, scores, masks],
|
|
Tout=tf.uint8)
|
|
|
|
-- Example 2 --
|
|
vis_masks_and_track_ids_fn = create_visualization_fn(category_index,
|
|
include_masks=True, include_keypoints=False, include_track_ids=True,
|
|
**kwargs)
|
|
image = tf.py_func(vis_masks_and_track_ids_fn,
|
|
inp=[image, boxes, classes, scores, masks, track_ids],
|
|
Tout=tf.uint8)
|
|
|
|
Args:
|
|
category_index: a dict that maps integer ids to category dicts. e.g.
|
|
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
|
|
include_masks: Whether masks should be expected as a positional argument in
|
|
the returned function.
|
|
include_keypoints: Whether keypoints should be expected as a positional
|
|
argument in the returned function.
|
|
include_track_ids: Whether track ids should be expected as a positional
|
|
argument in the returned function.
|
|
**kwargs: Additional kwargs that will be passed to
|
|
visualize_boxes_and_labels_on_image_array.
|
|
|
|
Returns:
|
|
Returns a function that only takes tensors as positional arguments.
|
|
"""
|
|
|
|
def visualization_py_func_fn(*args):
|
|
"""Visualization function that can be wrapped in a tf.py_func.
|
|
|
|
Args:
|
|
*args: First 4 positional arguments must be:
|
|
image - uint8 numpy array with shape (img_height, img_width, 3).
|
|
boxes - a numpy array of shape [N, 4].
|
|
classes - a numpy array of shape [N].
|
|
scores - a numpy array of shape [N] or None.
|
|
-- Optional positional arguments --
|
|
instance_masks - a numpy array of shape [N, image_height, image_width].
|
|
keypoints - a numpy array of shape [N, num_keypoints, 2].
|
|
track_ids - a numpy array of shape [N] with unique track ids.
|
|
|
|
Returns:
|
|
uint8 numpy array with shape (img_height, img_width, 3) with overlaid
|
|
boxes.
|
|
"""
|
|
image = args[0]
|
|
boxes = args[1]
|
|
classes = args[2]
|
|
scores = args[3]
|
|
masks = keypoints = track_ids = None
|
|
pos_arg_ptr = 4 # Positional argument for first optional tensor (masks).
|
|
if include_masks:
|
|
masks = args[pos_arg_ptr]
|
|
pos_arg_ptr += 1
|
|
if include_keypoints:
|
|
keypoints = args[pos_arg_ptr]
|
|
pos_arg_ptr += 1
|
|
if include_track_ids:
|
|
track_ids = args[pos_arg_ptr]
|
|
|
|
return visualize_boxes_and_labels_on_image_array(
|
|
image,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index=category_index,
|
|
instance_masks=masks,
|
|
keypoints=keypoints,
|
|
track_ids=track_ids,
|
|
**kwargs)
|
|
return visualization_py_func_fn
|
|
|
|
|
|
def _resize_original_image(image, image_shape):
|
|
image = tf.expand_dims(image, 0)
|
|
image = tf.image.resize_images(
|
|
image,
|
|
image_shape,
|
|
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
|
|
align_corners=True)
|
|
return tf.cast(tf.squeeze(image, 0), tf.uint8)
|
|
|
|
|
|
def draw_bounding_boxes_on_image_tensors(images,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
original_image_spatial_shape=None,
|
|
true_image_shape=None,
|
|
instance_masks=None,
|
|
keypoints=None,
|
|
track_ids=None,
|
|
max_boxes_to_draw=20,
|
|
min_score_thresh=0.2,
|
|
use_normalized_coordinates=True):
|
|
"""Draws bounding boxes, masks, and keypoints on batch of image tensors.
|
|
|
|
Args:
|
|
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
|
|
channels will be ignored. If C = 1, then we convert the images to RGB
|
|
images.
|
|
boxes: [N, max_detections, 4] float32 tensor of detection boxes.
|
|
classes: [N, max_detections] int tensor of detection classes. Note that
|
|
classes are 1-indexed.
|
|
scores: [N, max_detections] float32 tensor of detection scores.
|
|
category_index: a dict that maps integer ids to category dicts. e.g.
|
|
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
|
|
original_image_spatial_shape: [N, 2] tensor containing the spatial size of
|
|
the original image.
|
|
true_image_shape: [N, 3] tensor containing the spatial size of unpadded
|
|
original_image.
|
|
instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
|
|
instance masks.
|
|
keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
|
|
with keypoints.
|
|
track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e.
|
|
instance ids for each object). If provided, the color-coding of boxes is
|
|
dictated by these ids, and not classes.
|
|
max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
|
|
min_score_thresh: Minimum score threshold for visualization. Default 0.2.
|
|
use_normalized_coordinates: Whether to assume boxes and kepoints are in
|
|
normalized coordinates (as opposed to absolute coordiantes).
|
|
Default is True.
|
|
|
|
Returns:
|
|
4D image tensor of type uint8, with boxes drawn on top.
|
|
"""
|
|
# Additional channels are being ignored.
|
|
if images.shape[3] > 3:
|
|
images = images[:, :, :, 0:3]
|
|
elif images.shape[3] == 1:
|
|
images = tf.image.grayscale_to_rgb(images)
|
|
visualization_keyword_args = {
|
|
'use_normalized_coordinates': use_normalized_coordinates,
|
|
'max_boxes_to_draw': max_boxes_to_draw,
|
|
'min_score_thresh': min_score_thresh,
|
|
'agnostic_mode': False,
|
|
'line_thickness': 4
|
|
}
|
|
if true_image_shape is None:
|
|
true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
|
|
else:
|
|
true_shapes = true_image_shape
|
|
if original_image_spatial_shape is None:
|
|
original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
|
|
else:
|
|
original_shapes = original_image_spatial_shape
|
|
|
|
visualize_boxes_fn = create_visualization_fn(
|
|
category_index,
|
|
include_masks=instance_masks is not None,
|
|
include_keypoints=keypoints is not None,
|
|
include_track_ids=track_ids is not None,
|
|
**visualization_keyword_args)
|
|
|
|
elems = [true_shapes, original_shapes, images, boxes, classes, scores]
|
|
if instance_masks is not None:
|
|
elems.append(instance_masks)
|
|
if keypoints is not None:
|
|
elems.append(keypoints)
|
|
if track_ids is not None:
|
|
elems.append(track_ids)
|
|
|
|
def draw_boxes(image_and_detections):
|
|
"""Draws boxes on image."""
|
|
true_shape = image_and_detections[0]
|
|
original_shape = image_and_detections[1]
|
|
if true_image_shape is not None:
|
|
image = shape_utils.pad_or_clip_nd(image_and_detections[2],
|
|
[true_shape[0], true_shape[1], 3])
|
|
if original_image_spatial_shape is not None:
|
|
image_and_detections[2] = _resize_original_image(image, original_shape)
|
|
|
|
image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:],
|
|
tf.uint8)
|
|
return image_with_boxes
|
|
|
|
images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
|
|
return images
|
|
|
|
|
|
def draw_side_by_side_evaluation_image(eval_dict,
|
|
category_index,
|
|
max_boxes_to_draw=20,
|
|
min_score_thresh=0.2,
|
|
use_normalized_coordinates=True):
|
|
"""Creates a side-by-side image with detections and groundtruth.
|
|
|
|
Bounding boxes (and instance masks, if available) are visualized on both
|
|
subimages.
|
|
|
|
Args:
|
|
eval_dict: The evaluation dictionary returned by
|
|
eval_util.result_dict_for_batched_example() or
|
|
eval_util.result_dict_for_single_example().
|
|
category_index: A category index (dictionary) produced from a labelmap.
|
|
max_boxes_to_draw: The maximum number of boxes to draw for detections.
|
|
min_score_thresh: The minimum score threshold for showing detections.
|
|
use_normalized_coordinates: Whether to assume boxes and kepoints are in
|
|
normalized coordinates (as opposed to absolute coordiantes).
|
|
Default is True.
|
|
|
|
Returns:
|
|
A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left
|
|
corresponds to detections, while the subimage on the right corresponds to
|
|
groundtruth.
|
|
"""
|
|
detection_fields = fields.DetectionResultFields()
|
|
input_data_fields = fields.InputDataFields()
|
|
|
|
images_with_detections_list = []
|
|
|
|
# Add the batch dimension if the eval_dict is for single example.
|
|
if len(eval_dict[detection_fields.detection_classes].shape) == 1:
|
|
for key in eval_dict:
|
|
if key != input_data_fields.original_image:
|
|
eval_dict[key] = tf.expand_dims(eval_dict[key], 0)
|
|
|
|
for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
|
|
instance_masks = None
|
|
if detection_fields.detection_masks in eval_dict:
|
|
instance_masks = tf.cast(
|
|
tf.expand_dims(
|
|
eval_dict[detection_fields.detection_masks][indx], axis=0),
|
|
tf.uint8)
|
|
keypoints = None
|
|
if detection_fields.detection_keypoints in eval_dict:
|
|
keypoints = tf.expand_dims(
|
|
eval_dict[detection_fields.detection_keypoints][indx], axis=0)
|
|
groundtruth_instance_masks = None
|
|
if input_data_fields.groundtruth_instance_masks in eval_dict:
|
|
groundtruth_instance_masks = tf.cast(
|
|
tf.expand_dims(
|
|
eval_dict[input_data_fields.groundtruth_instance_masks][indx],
|
|
axis=0), tf.uint8)
|
|
|
|
images_with_detections = draw_bounding_boxes_on_image_tensors(
|
|
tf.expand_dims(
|
|
eval_dict[input_data_fields.original_image][indx], axis=0),
|
|
tf.expand_dims(
|
|
eval_dict[detection_fields.detection_boxes][indx], axis=0),
|
|
tf.expand_dims(
|
|
eval_dict[detection_fields.detection_classes][indx], axis=0),
|
|
tf.expand_dims(
|
|
eval_dict[detection_fields.detection_scores][indx], axis=0),
|
|
category_index,
|
|
original_image_spatial_shape=tf.expand_dims(
|
|
eval_dict[input_data_fields.original_image_spatial_shape][indx],
|
|
axis=0),
|
|
true_image_shape=tf.expand_dims(
|
|
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
|
|
instance_masks=instance_masks,
|
|
keypoints=keypoints,
|
|
max_boxes_to_draw=max_boxes_to_draw,
|
|
min_score_thresh=min_score_thresh,
|
|
use_normalized_coordinates=use_normalized_coordinates)
|
|
images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
|
|
tf.expand_dims(
|
|
eval_dict[input_data_fields.original_image][indx], axis=0),
|
|
tf.expand_dims(
|
|
eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0),
|
|
tf.expand_dims(
|
|
eval_dict[input_data_fields.groundtruth_classes][indx], axis=0),
|
|
tf.expand_dims(
|
|
tf.ones_like(
|
|
eval_dict[input_data_fields.groundtruth_classes][indx],
|
|
dtype=tf.float32),
|
|
axis=0),
|
|
category_index,
|
|
original_image_spatial_shape=tf.expand_dims(
|
|
eval_dict[input_data_fields.original_image_spatial_shape][indx],
|
|
axis=0),
|
|
true_image_shape=tf.expand_dims(
|
|
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
|
|
instance_masks=groundtruth_instance_masks,
|
|
keypoints=None,
|
|
max_boxes_to_draw=None,
|
|
min_score_thresh=0.0,
|
|
use_normalized_coordinates=use_normalized_coordinates)
|
|
images_with_detections_list.append(
|
|
tf.concat([images_with_detections, images_with_groundtruth], axis=2))
|
|
return images_with_detections_list
|
|
|
|
|
|
def draw_keypoints_on_image_array(image,
|
|
keypoints,
|
|
color='red',
|
|
radius=2,
|
|
use_normalized_coordinates=True):
|
|
"""Draws keypoints on an image (numpy array).
|
|
|
|
Args:
|
|
image: a numpy array with shape [height, width, 3].
|
|
keypoints: a numpy array with shape [num_keypoints, 2].
|
|
color: color to draw the keypoints with. Default is red.
|
|
radius: keypoint radius. Default value is 2.
|
|
use_normalized_coordinates: if True (default), treat keypoint values as
|
|
relative to the image. Otherwise treat them as absolute.
|
|
"""
|
|
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
|
draw_keypoints_on_image(image_pil, keypoints, color, radius,
|
|
use_normalized_coordinates)
|
|
np.copyto(image, np.array(image_pil))
|
|
|
|
|
|
def draw_keypoints_on_image(image,
|
|
keypoints,
|
|
color='red',
|
|
radius=2,
|
|
use_normalized_coordinates=True):
|
|
"""Draws keypoints on an image.
|
|
|
|
Args:
|
|
image: a PIL.Image object.
|
|
keypoints: a numpy array with shape [num_keypoints, 2].
|
|
color: color to draw the keypoints with. Default is red.
|
|
radius: keypoint radius. Default value is 2.
|
|
use_normalized_coordinates: if True (default), treat keypoint values as
|
|
relative to the image. Otherwise treat them as absolute.
|
|
"""
|
|
draw = ImageDraw.Draw(image)
|
|
im_width, im_height = image.size
|
|
keypoints_x = [k[1] for k in keypoints]
|
|
keypoints_y = [k[0] for k in keypoints]
|
|
if use_normalized_coordinates:
|
|
keypoints_x = tuple([im_width * x for x in keypoints_x])
|
|
keypoints_y = tuple([im_height * y for y in keypoints_y])
|
|
for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
|
|
draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
|
|
(keypoint_x + radius, keypoint_y + radius)],
|
|
outline=color, fill=color)
|
|
|
|
|
|
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
|
|
"""Draws mask on an image.
|
|
|
|
Args:
|
|
image: uint8 numpy array with shape (img_height, img_height, 3)
|
|
mask: a uint8 numpy array of shape (img_height, img_height) with
|
|
values between either 0 or 1.
|
|
color: color to draw the keypoints with. Default is red.
|
|
alpha: transparency value between 0 and 1. (default: 0.4)
|
|
|
|
Raises:
|
|
ValueError: On incorrect data type for image or masks.
|
|
"""
|
|
if image.dtype != np.uint8:
|
|
raise ValueError('`image` not of type np.uint8')
|
|
if mask.dtype != np.uint8:
|
|
raise ValueError('`mask` not of type np.uint8')
|
|
if np.any(np.logical_and(mask != 1, mask != 0)):
|
|
raise ValueError('`mask` elements should be in [0, 1]')
|
|
if image.shape[:2] != mask.shape:
|
|
raise ValueError('The image has spatial dimensions %s but the mask has '
|
|
'dimensions %s' % (image.shape[:2], mask.shape))
|
|
rgb = ImageColor.getrgb(color)
|
|
pil_image = Image.fromarray(image)
|
|
|
|
solid_color = np.expand_dims(
|
|
np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
|
|
pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
|
|
pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
|
|
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
|
|
np.copyto(image, np.array(pil_image.convert('RGB')))
|
|
|
|
|
|
def visualize_boxes_and_labels_on_image_array(
|
|
image,
|
|
boxes,
|
|
classes,
|
|
scores,
|
|
category_index,
|
|
instance_masks=None,
|
|
instance_boundaries=None,
|
|
keypoints=None,
|
|
track_ids=None,
|
|
use_normalized_coordinates=False,
|
|
max_boxes_to_draw=20,
|
|
min_score_thresh=.5,
|
|
agnostic_mode=False,
|
|
line_thickness=4,
|
|
groundtruth_box_visualization_color='black',
|
|
skip_scores=False,
|
|
skip_labels=False,
|
|
skip_track_ids=False):
|
|
"""Overlay labeled boxes on an image with formatted scores and label names.
|
|
|
|
This function groups boxes that correspond to the same location
|
|
and creates a display string for each detection and overlays these
|
|
on the image. Note that this function modifies the image in place, and returns
|
|
that same image.
|
|
|
|
Args:
|
|
image: uint8 numpy array with shape (img_height, img_width, 3)
|
|
boxes: a numpy array of shape [N, 4]
|
|
classes: a numpy array of shape [N]. Note that class indices are 1-based,
|
|
and match the keys in the label map.
|
|
scores: a numpy array of shape [N] or None. If scores=None, then
|
|
this function assumes that the boxes to be plotted are groundtruth
|
|
boxes and plot all boxes as black with no classes or scores.
|
|
category_index: a dict containing category dictionaries (each holding
|
|
category index `id` and category name `name`) keyed by category indices.
|
|
instance_masks: a numpy array of shape [N, image_height, image_width] with
|
|
values ranging between 0 and 1, can be None.
|
|
instance_boundaries: a numpy array of shape [N, image_height, image_width]
|
|
with values ranging between 0 and 1, can be None.
|
|
keypoints: a numpy array of shape [N, num_keypoints, 2], can
|
|
be None
|
|
track_ids: a numpy array of shape [N] with unique track ids. If provided,
|
|
color-coding of boxes will be determined by these ids, and not the class
|
|
indices.
|
|
use_normalized_coordinates: whether boxes is to be interpreted as
|
|
normalized coordinates or not.
|
|
max_boxes_to_draw: maximum number of boxes to visualize. If None, draw
|
|
all boxes.
|
|
min_score_thresh: minimum score threshold for a box to be visualized
|
|
agnostic_mode: boolean (default: False) controlling whether to evaluate in
|
|
class-agnostic mode or not. This mode will display scores but ignore
|
|
classes.
|
|
line_thickness: integer (default: 4) controlling line width of the boxes.
|
|
groundtruth_box_visualization_color: box color for visualizing groundtruth
|
|
boxes
|
|
skip_scores: whether to skip score when drawing a single detection
|
|
skip_labels: whether to skip label when drawing a single detection
|
|
skip_track_ids: whether to skip track id when drawing a single detection
|
|
|
|
Returns:
|
|
uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
|
|
"""
|
|
# Create a display string (and color) for every box location, group any boxes
|
|
# that correspond to the same location.
|
|
box_to_display_str_map = collections.defaultdict(list)
|
|
box_to_color_map = collections.defaultdict(str)
|
|
box_to_instance_masks_map = {}
|
|
box_to_instance_boundaries_map = {}
|
|
box_to_keypoints_map = collections.defaultdict(list)
|
|
box_to_track_ids_map = {}
|
|
if not max_boxes_to_draw:
|
|
max_boxes_to_draw = boxes.shape[0]
|
|
for i in range(min(max_boxes_to_draw, boxes.shape[0])):
|
|
if scores is None or scores[i] > min_score_thresh:
|
|
box = tuple(boxes[i].tolist())
|
|
if instance_masks is not None:
|
|
box_to_instance_masks_map[box] = instance_masks[i]
|
|
if instance_boundaries is not None:
|
|
box_to_instance_boundaries_map[box] = instance_boundaries[i]
|
|
if keypoints is not None:
|
|
box_to_keypoints_map[box].extend(keypoints[i])
|
|
if track_ids is not None:
|
|
box_to_track_ids_map[box] = track_ids[i]
|
|
if scores is None:
|
|
box_to_color_map[box] = groundtruth_box_visualization_color
|
|
else:
|
|
display_str = ''
|
|
if not skip_labels:
|
|
if not agnostic_mode:
|
|
if classes[i] in category_index.keys():
|
|
class_name = category_index[classes[i]]['name']
|
|
else:
|
|
class_name = 'N/A'
|
|
display_str = str(class_name)
|
|
if not skip_scores:
|
|
if not display_str:
|
|
display_str = '{}%'.format(int(100*scores[i]))
|
|
else:
|
|
display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
|
|
if not skip_track_ids and track_ids is not None:
|
|
if not display_str:
|
|
display_str = 'ID {}'.format(track_ids[i])
|
|
else:
|
|
display_str = '{}: ID {}'.format(display_str, track_ids[i])
|
|
box_to_display_str_map[box].append(display_str)
|
|
if agnostic_mode:
|
|
box_to_color_map[box] = 'DarkOrange'
|
|
elif track_ids is not None:
|
|
prime_multipler = _get_multiplier_for_color_randomness()
|
|
box_to_color_map[box] = STANDARD_COLORS[
|
|
(prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
|
|
else:
|
|
box_to_color_map[box] = STANDARD_COLORS[
|
|
classes[i] % len(STANDARD_COLORS)]
|
|
|
|
# Draw all boxes onto image.
|
|
for box, color in box_to_color_map.items():
|
|
ymin, xmin, ymax, xmax = box
|
|
if instance_masks is not None:
|
|
draw_mask_on_image_array(
|
|
image,
|
|
box_to_instance_masks_map[box],
|
|
color=color
|
|
)
|
|
if instance_boundaries is not None:
|
|
draw_mask_on_image_array(
|
|
image,
|
|
box_to_instance_boundaries_map[box],
|
|
color='red',
|
|
alpha=1.0
|
|
)
|
|
draw_bounding_box_on_image_array(
|
|
image,
|
|
ymin,
|
|
xmin,
|
|
ymax,
|
|
xmax,
|
|
color=color,
|
|
thickness=line_thickness,
|
|
display_str_list=box_to_display_str_map[box],
|
|
use_normalized_coordinates=use_normalized_coordinates)
|
|
if keypoints is not None:
|
|
draw_keypoints_on_image_array(
|
|
image,
|
|
box_to_keypoints_map[box],
|
|
color=color,
|
|
radius=line_thickness / 2,
|
|
use_normalized_coordinates=use_normalized_coordinates)
|
|
|
|
return image
|
|
|
|
|
|
def add_cdf_image_summary(values, name):
|
|
"""Adds a tf.summary.image for a CDF plot of the values.
|
|
|
|
Normalizes `values` such that they sum to 1, plots the cumulative distribution
|
|
function and creates a tf image summary.
|
|
|
|
Args:
|
|
values: a 1-D float32 tensor containing the values.
|
|
name: name for the image summary.
|
|
"""
|
|
def cdf_plot(values):
|
|
"""Numpy function to plot CDF."""
|
|
normalized_values = values / np.sum(values)
|
|
sorted_values = np.sort(normalized_values)
|
|
cumulative_values = np.cumsum(sorted_values)
|
|
fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
|
|
/ cumulative_values.size)
|
|
fig = plt.figure(frameon=False)
|
|
ax = fig.add_subplot('111')
|
|
ax.plot(fraction_of_examples, cumulative_values)
|
|
ax.set_ylabel('cumulative normalized values')
|
|
ax.set_xlabel('fraction of examples')
|
|
fig.canvas.draw()
|
|
width, height = fig.get_size_inches() * fig.get_dpi()
|
|
image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
|
|
1, int(height), int(width), 3)
|
|
return image
|
|
cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
|
|
tf.summary.image(name, cdf_plot)
|
|
|
|
|
|
def add_hist_image_summary(values, bins, name):
|
|
"""Adds a tf.summary.image for a histogram plot of the values.
|
|
|
|
Plots the histogram of values and creates a tf image summary.
|
|
|
|
Args:
|
|
values: a 1-D float32 tensor containing the values.
|
|
bins: bin edges which will be directly passed to np.histogram.
|
|
name: name for the image summary.
|
|
"""
|
|
|
|
def hist_plot(values, bins):
|
|
"""Numpy function to plot hist."""
|
|
fig = plt.figure(frameon=False)
|
|
ax = fig.add_subplot('111')
|
|
y, x = np.histogram(values, bins=bins)
|
|
ax.plot(x[:-1], y)
|
|
ax.set_ylabel('count')
|
|
ax.set_xlabel('value')
|
|
fig.canvas.draw()
|
|
width, height = fig.get_size_inches() * fig.get_dpi()
|
|
image = np.fromstring(
|
|
fig.canvas.tostring_rgb(), dtype='uint8').reshape(
|
|
1, int(height), int(width), 3)
|
|
return image
|
|
hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8)
|
|
tf.summary.image(name, hist_plot)
|
|
|
|
|
|
class EvalMetricOpsVisualization(object):
|
|
"""Abstract base class responsible for visualizations during evaluation.
|
|
|
|
Currently, summary images are not run during evaluation. One way to produce
|
|
evaluation images in Tensorboard is to provide tf.summary.image strings as
|
|
`value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is
|
|
responsible for accruing images (with overlaid detections and groundtruth)
|
|
and returning a dictionary that can be passed to `eval_metric_ops`.
|
|
"""
|
|
__metaclass__ = abc.ABCMeta
|
|
|
|
def __init__(self,
|
|
category_index,
|
|
max_examples_to_draw=5,
|
|
max_boxes_to_draw=20,
|
|
min_score_thresh=0.2,
|
|
use_normalized_coordinates=True,
|
|
summary_name_prefix='evaluation_image'):
|
|
"""Creates an EvalMetricOpsVisualization.
|
|
|
|
Args:
|
|
category_index: A category index (dictionary) produced from a labelmap.
|
|
max_examples_to_draw: The maximum number of example summaries to produce.
|
|
max_boxes_to_draw: The maximum number of boxes to draw for detections.
|
|
min_score_thresh: The minimum score threshold for showing detections.
|
|
use_normalized_coordinates: Whether to assume boxes and kepoints are in
|
|
normalized coordinates (as opposed to absolute coordiantes).
|
|
Default is True.
|
|
summary_name_prefix: A string prefix for each image summary.
|
|
"""
|
|
|
|
self._category_index = category_index
|
|
self._max_examples_to_draw = max_examples_to_draw
|
|
self._max_boxes_to_draw = max_boxes_to_draw
|
|
self._min_score_thresh = min_score_thresh
|
|
self._use_normalized_coordinates = use_normalized_coordinates
|
|
self._summary_name_prefix = summary_name_prefix
|
|
self._images = []
|
|
|
|
def clear(self):
|
|
self._images = []
|
|
|
|
def add_images(self, images):
|
|
"""Store a list of images, each with shape [1, H, W, C]."""
|
|
if len(self._images) >= self._max_examples_to_draw:
|
|
return
|
|
|
|
# Store images and clip list if necessary.
|
|
self._images.extend(images)
|
|
if len(self._images) > self._max_examples_to_draw:
|
|
self._images[self._max_examples_to_draw:] = []
|
|
|
|
def get_estimator_eval_metric_ops(self, eval_dict):
|
|
"""Returns metric ops for use in tf.estimator.EstimatorSpec.
|
|
|
|
Args:
|
|
eval_dict: A dictionary that holds an image, groundtruth, and detections
|
|
for a batched example. Note that, we use only the first example for
|
|
visualization. See eval_util.result_dict_for_batched_example() for a
|
|
convenient method for constructing such a dictionary. The dictionary
|
|
contains
|
|
fields.InputDataFields.original_image: [batch_size, H, W, 3] image.
|
|
fields.InputDataFields.original_image_spatial_shape: [batch_size, 2]
|
|
tensor containing the size of the original image.
|
|
fields.InputDataFields.true_image_shape: [batch_size, 3]
|
|
tensor containing the spatial size of the upadded original image.
|
|
fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4]
|
|
float32 tensor with groundtruth boxes in range [0.0, 1.0].
|
|
fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes]
|
|
int64 tensor with 1-indexed groundtruth classes.
|
|
fields.InputDataFields.groundtruth_instance_masks - (optional)
|
|
[batch_size, num_boxes, H, W] int64 tensor with instance masks.
|
|
fields.DetectionResultFields.detection_boxes - [batch_size,
|
|
max_num_boxes, 4] float32 tensor with detection boxes in range [0.0,
|
|
1.0].
|
|
fields.DetectionResultFields.detection_classes - [batch_size,
|
|
max_num_boxes] int64 tensor with 1-indexed detection classes.
|
|
fields.DetectionResultFields.detection_scores - [batch_size,
|
|
max_num_boxes] float32 tensor with detection scores.
|
|
fields.DetectionResultFields.detection_masks - (optional) [batch_size,
|
|
max_num_boxes, H, W] float32 tensor of binarized masks.
|
|
fields.DetectionResultFields.detection_keypoints - (optional)
|
|
[batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with
|
|
keypoints.
|
|
|
|
Returns:
|
|
A dictionary of image summary names to tuple of (value_op, update_op). The
|
|
`update_op` is the same for all items in the dictionary, and is
|
|
responsible for saving a single side-by-side image with detections and
|
|
groundtruth. Each `value_op` holds the tf.summary.image string for a given
|
|
image.
|
|
"""
|
|
if self._max_examples_to_draw == 0:
|
|
return {}
|
|
images = self.images_from_evaluation_dict(eval_dict)
|
|
|
|
def get_images():
|
|
"""Returns a list of images, padded to self._max_images_to_draw."""
|
|
images = self._images
|
|
while len(images) < self._max_examples_to_draw:
|
|
images.append(np.array(0, dtype=np.uint8))
|
|
self.clear()
|
|
return images
|
|
|
|
def image_summary_or_default_string(summary_name, image):
|
|
"""Returns image summaries for non-padded elements."""
|
|
return tf.cond(
|
|
tf.equal(tf.size(tf.shape(image)), 4),
|
|
lambda: tf.summary.image(summary_name, image),
|
|
lambda: tf.constant(''))
|
|
|
|
if tf.executing_eagerly():
|
|
update_op = self.add_images([[images[0]]])
|
|
image_tensors = get_images()
|
|
else:
|
|
update_op = tf.py_func(self.add_images, [[images[0]]], [])
|
|
image_tensors = tf.py_func(
|
|
get_images, [], [tf.uint8] * self._max_examples_to_draw)
|
|
eval_metric_ops = {}
|
|
for i, image in enumerate(image_tensors):
|
|
summary_name = self._summary_name_prefix + '/' + str(i)
|
|
value_op = image_summary_or_default_string(summary_name, image)
|
|
eval_metric_ops[summary_name] = (value_op, update_op)
|
|
return eval_metric_ops
|
|
|
|
@abc.abstractmethod
|
|
def images_from_evaluation_dict(self, eval_dict):
|
|
"""Converts evaluation dictionary into a list of image tensors.
|
|
|
|
To be overridden by implementations.
|
|
|
|
Args:
|
|
eval_dict: A dictionary with all the necessary information for producing
|
|
visualizations.
|
|
|
|
Returns:
|
|
A list of [1, H, W, C] uint8 tensors.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class VisualizeSingleFrameDetections(EvalMetricOpsVisualization):
|
|
"""Class responsible for single-frame object detection visualizations."""
|
|
|
|
def __init__(self,
|
|
category_index,
|
|
max_examples_to_draw=5,
|
|
max_boxes_to_draw=20,
|
|
min_score_thresh=0.2,
|
|
use_normalized_coordinates=True,
|
|
summary_name_prefix='Detections_Left_Groundtruth_Right'):
|
|
super(VisualizeSingleFrameDetections, self).__init__(
|
|
category_index=category_index,
|
|
max_examples_to_draw=max_examples_to_draw,
|
|
max_boxes_to_draw=max_boxes_to_draw,
|
|
min_score_thresh=min_score_thresh,
|
|
use_normalized_coordinates=use_normalized_coordinates,
|
|
summary_name_prefix=summary_name_prefix)
|
|
|
|
def images_from_evaluation_dict(self, eval_dict):
|
|
return draw_side_by_side_evaluation_image(
|
|
eval_dict, self._category_index, self._max_boxes_to_draw,
|
|
self._min_score_thresh, self._use_normalized_coordinates)
|