|
|
- from modules import utils
-
- from flask import Flask, request, Response
- from flask_restful import Resource, Api
-
- from PIL import Image
-
- import base64
- import json
- import sys
- import os
- import io
-
- if sys.platform == "win32":
- import tensorflow as tf
- import numpy as np
- import pickle
-
- sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
- from utils import label_map_util
-
- from utils import visualization_utils as vis_util
-
- app = Flask(__name__)
- api = Api(app)
-
- db_path = os.path.join(app.root_path, 'databases', 'crashes.json')
- with open(db_path, 'r') as f:
- crashes = json.load(f)
-
- users_path = os.path.join(app.root_path, 'databases', 'users.json')
- with open(users_path, 'r') as f:
- users = json.load(f)
-
- if sys.platform == "win32":
- PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/mscoco_label_map.pbtxt'
- PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb'
-
- NUM_CLASSES = 8
-
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
-
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
-
- def process_img(img):
- pass
-
- class Crash(Resource):
- def post(self):
- message = request.form['message']
- base64_img = request.form['img']
- id = request.form['id']
-
- process_img(Image.open(io.BytesIO(base64.b64decode(base64_img))))
-
-
- return id
|