You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

65 lines
1.8 KiB

from modules import utils
from flask import Flask, request, Response
from flask_restful import Resource, Api
from PIL import Image
import base64
import json
import sys
import os
import io
if sys.platform == "win32":
import tensorflow as tf
import numpy as np
import pickle
sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
from utils import label_map_util
from utils import visualization_utils as vis_util
app = Flask(__name__)
api = Api(app)
db_path = os.path.join(app.root_path, 'databases', 'crashes.json')
with open(db_path, 'r') as f:
crashes = json.load(f)
users_path = os.path.join(app.root_path, 'databases', 'users.json')
with open(users_path, 'r') as f:
users = json.load(f)
if sys.platform == "win32":
PATH_TO_LABELS = '../../traffic_analyzer/object_detection/data/mscoco_label_map.pbtxt'
PATH_TO_CKPT = 'modules/faster_rcnn_resnet101_kitti_2018_01_28/frozen_inference_graph.pb'
NUM_CLASSES = 8
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def process_img(img):
pass
class Crash(Resource):
def post(self):
message = request.form['message']
base64_img = request.form['img']
id = request.form['id']
process_img(Image.open(io.BytesIO(base64.b64decode(base64_img))))
return id